
CRYPTOGRAPHIC MEASURES IN INFORMATION HIDING

Phillip A. Regalia

Department of Electrical Engineering and Computer Science
Catholic University of America

Washington, DC 20064

ABSTRACT

Recent information hiding schemes are scrutinized in terms

of their cryptographic performance. We establish conditions

under which the key equivocation function is optimal for the

studied schemes, and show that, under a reasonable key gen-

eration model, the perfect secrecy property is nearly satisfied,

limited by a mutual information measure that decreases ex-

ponentially with the block length. The novelty of the work is

to extend classical cryptographic analysis results to schemes

involving cover signals, a component absent from standard

cryptography. The schemes show unexpectedly good crypto-

graphic security, although we observe that information em-

bedding with robustness has steganographic weaknesses.

Index Terms— Information hiding; wet paper coding;

key equivocation; message equivocation; perfect secrecy.

1. INTRODUCTION

Contemporary information hiding has recast watermarking on

solid information theoretic grounds to assess embedding ca-

pacity and robustness to attack [1]–[3]. An equally important

consideration from a cryptographic or steganographic view-

point, however, is how well the message is indeed hidden in

the first place. Although one can always, in principle, encrypt

a message prior to embedding it, this presents additional over-

head, and ignores the issue of whether information hiding al-

gorithms have any intrinsic security features.

With this view, we reexamine information embedding [1]–

[3] and wet paper coding [4], [5] (representing two offshoots

of dirty paper coding [6]), by exploiting the crossroads of

coding and cryptography (e.g., [7]–[11]). Although not de-

signed from cryptographic considerations, the schemes under

study are shown to exhibit unexpectedly good cryptographic

security for message and key equivocation functions, due in

essence to the additional randomness injected by the cover

signal. This may obviate further message obfuscation stages

in some applications.

Section 2 reviews the hiding schemes under study, and our

main results are collected in Section 3.

This work is supported by the National Science Foundation under grant
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2. PROBLEM SET-UP

We begin with the basic set-up of Figure 1. A cover sig-

nal (image, audio, video, etc.) generates a binary carrier se-

quence by way of a parity function which is assumed publicly

known [12], [4]. The carrier sequence is modified to embed

a given (plain text) message, producing a watermarked (or ci-

pher) signal. The original cover signal is then modified into

the stego signal whose parity function output agrees with the

cipher signal [4], [12], as indicated by the inverse parity func-

tion block. The sender and receiver agree on a private key.

Random variables are denoted with upper case italic let-

ters, with lower case bold letters denoting a particular real-

ization. Thus S denotes the carrier sequence from the parity

function (with s a particular realization), M denotes the mes-

sage to embed, K denotes the key, and C denotes the cipher

signal produced by the hiding function. We treat all signals as

vectors of bits (each 0 or 1), using componentwise modulo-2

addition over the Galois field F2. In particular:

• The carrier sequence contains n bits, derived from n
parity checks that comprise the parity function, so that

S ∈ F n
2 . We assume all 2n realizations of S are equally

probable, as furnished by a “good” parity function.

• The (plain text) message M collects q bits (M ∈ F q
2 )

with q < n, and all 2q configurations of M are assumed

equally probable (though, e.g., compression [7]).

• The key K ∈ Fq×n
2 is a q× n parity check matrix. For

a particular realization k of this matrix, and a particular

message m, the chosen cipher signal c ∈ F n
2 satisfies

m = kc

among other constraints to be detailed below. Thus if

the receiver knows the key k, the hidden message m
can be recovered from the cipher text c.

Entropy is denoted by H(·) and mutual information by I(· ; ·):
H(S) = −

∑
s∈Fn

2

Pr(s) log2 Pr(s)

I(M ; C) =
∑

m∈Fq
2

∑
c∈Fn

2

Pr(m, c) log2

Pr(m, c)
Pr(m) Pr(c)
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Fig. 1. Information hiding set-up with parity-function data.

For a given key k, assumed of full rank q, the set of binary

vectors b ∈ F n
2 that lie in its null space defines a code of rate

r = (n− q)/n, denoted Gk(0):

Gk(0) = {b ∈ F n
2 : 0 = kb}.

The set of binary vectors which produce instead a given “syn-

drome” m defines a coset [13] Gk(m) for that syndrome:

Gk(m) = {b ∈ F n
2 : m = kb}.

The member of Gk(m) of lowest Hamming weight (smallest

number of 1s) is the coset leader for the syndrome m.1

Modern information embedding [1]–[3] (here specialized

to the binary case) produces a cipher signal c minimizing the

Hamming distance d(s, c) subject to the constraint m = kc.

The amounts to “quantizing” the carrier sequence s to the

coset Gk(m). If e denotes the coset leader for the syndrome

m − ks, then c = s + e is the closest member of Gk(m) to

s. For any m, define the average distortion (per bit) as

D =
1
n

∑
s∈Fn

2

Pr(s) min
c∈Gk(m)

d(s, c)

Since each s is quantized to a code of rate r = (n− q)/n, the

average distortion is lower bounded through the rate-distortion

function [14, Thm. 13.3.1] as

H2(D) ≥ H ′(S)− r = 1− r

in which H2(D) = −D log2 D− (1−D) log2(1−D) is the

binary entropy function, and H ′(S) is the per-bit entropy rate

of the carrier sequence S (with H ′(S) = H(S)/n for large

enough n); here H ′(S) = 1 since S is uniformly distributed.

The lower bound on D [where H2(D) = 1 − r] is achieved

if the (error correction) code Gk(0) achieves channel capac-

ity over a binary symmetric channel with error probability D
(e.g., [14], [15]). Design methods for such codes [16], [17]

may thus be used to generate “low distortion” keys.

Wet paper coding [4], [5] likewise produces a cipher se-

quence c fulfilling m = kc, but with different constraints.

An index set—call it t—collects q integers from {1, 2, . . . , n}
1In case of nonuniqueness, a particular lowest-weight member is arbitrar-

ily selected as the unique coset leader.
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Fig. 2. Embedding rate versus distortion for the two schemes.

and permits c to differ from the carrier sequence s only in the

positions comprising t. This index set gives an “information

set” [9] provided a q × q submatrix of k—built by retaining

columns whose indices are in t—has full rank, giving then a

unique solution for c. The index set is randomly selected, and

need not be known to the receiver; the randomness is to better

evade detection by an eavesdropper [12], [4]. We thus intro-

duce T (a “tool” which complements the key) as a random

variable comprising the q indices used in the hiding stage,

with t denoting a particular outcome. The average distortion

from this method is D = 0.5q/n [4], with q/n the embed-

ding rate. This is larger than the average distortion attainable

using the information embedding construct reviewed above;

cf. Fig. 2. An intermediary between the two curves of Fig. 2

is obtained by allowing c and s to differ in l positions, with

q ≤ l ≤ n, giving 2l−q possibilities for c and thus generally

lower distortion [5] than the formulation of [4]. For clarity,

the extremes l = q and l = n are treated in what follows.

2.1. Embedding with robustness

Information embedding can also allow the message M to be

recovered even if the cipher text C suffers further distortion

[1]–[3]. The basic construct is to partition the key k row-wise

and choose the closest c to s that satisfies

q {
q′ {

[
m
0

]
=

[
k1

k2

]
︸ ︷︷ ︸

k

c

in which the null space of k2 gives a “good” error correc-

tion code, and that of k a “good” quantization code [2], [13].

If a sufficient number of cipher texts c are observed for the

same key k, the linear subspace they span builds the orthogo-

nal complement to k2. This reveals information on the key k
and, more seriously from a steganographic viewpoint, alerts

an observer that c may contain a hidden message. For this rea-

son, we shall not integrate message robustness in the analysis
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to follow. This amounts to removing k2, and the construct

reverts to its simpler form m = kc.

3. CRYPTOGRAPHIC SECURITY MEASURES

We begin with the key equivocation function [10] I(K; C) =
H(K) − H(K|C) which measures how much information

may be revealed about the key K from observations of the ci-

pher text C, and then study the message equivocation function

I(M ; C) underlying the perfect secrecy [10], [11] condition.

Lemma 1 The key equivocation function is given by

I(K; C) = H(C)−H(M)− I(S; K, C)
(information embedding)

= H(C)−H(M)− I(T ; K, C)− I(S; K, C, T )
(wet paper encoding)

These differ from a standard result [10, Thm. 2.10] by the

inclusion of mutual information terms involving the carrier

sequence S and/or tool set T , which are absent in classical

cryptography. For the proof, expand the joint entropy as

H(C,K, M, T, S) = H(K, M, T, S) + H(C|K, M, T, S)︸ ︷︷ ︸
=0

= H(K) + H(M) + H(T ) + H(S)

in which H(C|K, M, T, S) = 0 since the key, message, car-

rier and tool together determine the cipher text; the key, mes-

sage, carrier signal and tool are likewise assumed mutually

independent. By a separate expansion, we also have

H(C,K, M, T, S) = H(C) + H(K|C) + H(M |K, C)︸ ︷︷ ︸
=0

+ H(T |C,K, M) + H(S|C,K, M, T )

in which H(M |K, C) = 0, H(T |C,K, M) = H(T |C,K)
and H(S|C,K, M, T ) = H(S|C,K, T ) since the key and

cipher text determine the message. Equating the expansions

and isolating H(K) − H(K|C) = I(K; C) gives the state-

ment for wet paper encoding. The information embedding

expression then follows by removing the tool variable T . �
The following theorem gives conditions which ensure that

the key is not revealed by the cipher text, and that the cipher

text has maximum entropy:

Theorem 1 If H(S) = n (all carrier sequences equally prob-
able) and H(M) = q (all messages equally probable), then
for either scheme,

I(K; C) = 0 and H(C) = n.

For the proof, consider first the information embedding

scheme. Insert I(S; K, C) = H(S) − H(S|K, C) into the

expression of lemma 1, and isolate H(S|K, C) as

H(S|K, C) = I(K; C) + H(M) + H(S)−H(C)
= I(K; C) + q + n−H(C) (1)

We claim now that H(S|K, C) ≤ q. To verify, consider any

realization (k, c), and set m = kc. To construct a candidate

carrier sequence s, we note that s and c must differ by a coset

leader, of which there are 2q. (Pick any d ∈ F q
2 and let e be

the coset leader for m − d, to get s = c + e). This limits s
to one of 2q configurations. As such, the entropy of S given

any fixed couple (k, c) is bounded as H(S|k, c) ≤ q. By

averaging over the joint probability Pr(k, c),

H(S|K, C) =
∑
k,c

Pr(k, c) H(S|k, c) ≤ q

as well. This gives, via (1), I(K; C) + q + n−H(C) ≤ q or

I(K; C) ≤ H(C)− n.

But as the cipher signal has n bits, necessarily H(C) ≤ n,

giving I(K; C) ≤ 0. As mutual information is nonnegative,

we get I(K; C) = 0, H(C) = n, and H(S|K, C) = q.

For the wet paper scheme, lemma 1 reads

H(S|K, C, T ) = I(K; C) + I(T ; K, C) + q + n−H(C)

using still H(M) = q and H(S) = n. We again claim

H(S|K, C, T ) ≤ q, since knowledge of the index set t and ci-

pher signal c identifies the q positions in which s and c poten-

tially differ. This likewise reduces s to one of 2q possibilities,

to give H(S|C,K, T ) ≤ q as above, and thus

I(K; C) + I(T ; K, C) ≤ H(C)− n

with still H(C) ≤ n. This implies I(K; C) = 0, H(C) = n,

I(T ; K, C) = 0, and H(S|K, C, T ) = q. �
We consider next the message equivocation I(M ; C) that

measures how much information the cipher signal C reveals

about the message M . By rearranging two expansions of the

joint entropy H(M,C,K, T, S), we can show

I(M ; C) = H(M)−H(M |C)
= H(C)−H(K)−H(T )−H(S)

+ H(K|M,C) + H(T |M,K, C)
+ H(S|M,K, C, T )

= q − I(K; M,C)

using H(C) = H(S) = n, I(T ; M,C,K) = I(T ; C,K) =
0 and H(S|M,K, C, T ) = H(S|K, C, T ) = q from theo-

rem 1. The same expression applies to the information em-

bedding scheme upon removing the tool variable T . Now,

the non-negativity of I(M ; C) implies I(K; M,C) ≤ q. But

knowledge of the message M and cipher signal C reveals q
parity constraints on the key; if a full q bits of information are

imparted so that I(K; M,C) = q, then the perfect secrecy
[10], [11] condition I(M ; C) = 0 will be satisfied.

In this direction, suppose we model the elements Kij of

the key as i.i.d. Bernoulli random variables, with

Pr(Kij = 1) = 1− Pr(Kij = 0) = p.
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(The value p is small, and diminishes as 1/n, for a good low

density parity check matrix). We then claim:

Theorem 2 For sufficiently large nq,

I(M ; C) ≈ 2−nnqH2(p)

where H2(p) = −p log2 p− (1− p) log2(1− p).

As I(M ; C) = q − I(K; M,C), we examine I(K; M,C) =
H(K) − H(K|M,C). Since the nq elements of the key K
are i.i.d. and Bernoulli, H(K) = nqH2(p). The conditional

entropy H(K|M,C) may then be expanded as

H(K|M,C) =
∑
m,c

H(K|m, c) Pr(m, c)

Consider first the event c = 0. This implies m = 0; trivially

all keys satisfy 0 = k0. Thus H(K|0,0) = nqH2(p). Now,

Pr(m = 0, c = 0) = 2−n since H(C) = n implies Pr(c) =
2−n for each c, and

Pr(c = 0) = Pr(m = 0, c = 0) +
∑
m �=0

Pr(m, c = 0)︸ ︷︷ ︸
=0

Thus H(K|0,0) Pr(0,0) = 2−nnqH2(p).
Introduce now the typical set of keys

Aε
nq =

{
k : nq(H2(p)−ε) ≤ − log2 Pr(k) ≤ nq(H2(p)+ε)

}
.

For any fixed ε, the probability mass of the typical set Aε
nq

approaches 1 arbitrarily closely as nq grows, and has cardi-

nality |Aε
nq| ≈ 2nqH2(p) [14]. Now, for any cipher text c �= 0

and any message m, denote by

Aε
nq(m, c) =

{
k ∈ Aε

nq : m = kc}
the subset of typical keys consistent with the given (m, c).
As the equation m = kc introduces q parity constraints, a

fraction 1/2q of the typically keys will satisfy them, so that

|Aε
nq(m, c)| ≈ 2nqH2(p)/2q. For sufficiently small ε, the

probability mass function in the typical set is nearly uniform

[Pr(k) ≈ 2−nqH2(p) for k ∈ Aε
nq], so that

H(K|m, c) = −
∑

k∈Aε
nq(m,c)

Pr(k)
|Aε

nq(m, c)| log2

Pr(k)
|Aε

nq(m, c)|
≈ nqH2(p)− q, for each m and c �= 0.

Thus
∑

m,c �=0 H(K|m, c) Pr(m, c) ≈ nqH2(p) − q. Com-

bining the pieces,

I(K; M,C) = H(K)−H(K|M,C)
≈ nqH2(p)− 2−nnqH2(p)− nqH2(p) + q

giving I(M ; C) = q − I(K; M,C) ≈ 2−nnqH2(p). �
Alternatively, if k is a “good” parity check matrix, then so

is PqkPn, where Pq and Pn are permutation matrices. This

gives up to q!n! keys to choose from, each equally probable.

The same conclusion in theorem 2 can be reached, without

resorting to typical sets. Thus perfect secrecy is approached

exponentially fast in the block length n.
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