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ABSTRACT

This paper proposes a gait recognition system in which several views
are available. It is shown that each view has unequal discrimina-
tion power and, therefore, should have unequal contribution in the
recognition process. In order to exploit the availability of multiple
views, several methods for the combination of the results that are
obtained from the individual views are tested and evaluated. A novel
approach for the combination of the results from several views is
also proposed based on the relative importance of each view. The
proposed approach generates improved results, compared to those
obtained by using individual views or by using multiple views that
are combined using other combination methods.
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1. INTRODUCTION

Gait recognition [1] aims at the identification of individuals based
on their walking style. Recognition based on human gait has several
advantages related to the unobtrusiveness and the ease with which
gait information can be captured. Unlike other biometrics, gait can
be captured from a distant camera, without drawing the attention of
the observed subject.

Although several approaches have been presented for the recog-
nition of human gait, most of them limit their attention to the case
in which only the side-view is available since this viewing angle is
considered to provide the richest information of the gait of the wak-
ing person [2, 3, 4]. In [5], an experiment was carried out using
two views, namely the frontal-parallel view and the side-view, from
which the silhouettes of the subjects in two walking stances were
extracted. This approach exhibited a higher recognition accuracy for
the frontal-parallel view than that of the side-view. The side-view
was also examined in [6] together with another view from a different
angle, and the static parameters, such as the height of the walking
person, as well as distances between body parts, were used in the
template matching. Apart from the recognition rate, the results were
also reported based on a small sample set using a confusion metric
which reflects the effectiveness of the approach in the situation of a
large population of subjects. The authors in [7] synthesize the side-
view silhouettes from those captured by multiple cameras employing
visual hull techniques, while in [8], the approach taken relied on the
perspective projection and optical flow based structure of motion ap-
proach was taken instead. In [9], information from multiple cameras
is gathered to construct a 3D gait model.

In this paper, we use the Motion of Body (MoBo) database from
the Carnegie Mellon University (CMU) in order to investigate the
contribution of each viewing direction to the recognition perfor-
mance of a gait recognition system. In general, we try to answer

the fundamental question: if several views are available to a gait
recognition system, what is the most appropriate way to combine
them in order to enhance the performance and the reliability of the
system? We provide a detailed analysis of the role and the contri-
bution of each viewing direction by reporting recognition results
of systems based on each one of the available views. We also pro-
pose a novel way to combine the results obtained from independent
views. In the proposed approach, we set a weight for each view,
based on its importance as it is calculated using the statistical pro-
cessing of the differences between views. The experimental results
demonstrate the superior performance of the proposed weighted
combination approach in comparison to the single-view approach
and other combination methods for multiple views.

2. GAIT RECOGNITION USING MULTIPLE VIEWS

The CMU Motion of Body (MoBo) database does not contain ex-
plicitly the reference set and the test sets as in [2]. Therefore, we
chose to use the “fast walk” sequences as the reference set, and the
“slow walk” sequences as the test set. As mentioned in the intro-
duction, our goal is to find out which viewing directions have the
most significant contribution in a multiview gait recognition system.
To this end, we adopt a simple and straightforward way in order to
determine the similarity between gait sequences in the reference and
test databases. Initially, from each gait sequence, taken from a spe-
cific viewpoint, we construct a simple template T by averaging all
frames in the sequence ([10, 11])

T =
1

NT

NT∑
a=1

ta (1)

where ta, a = 1, ..., NT are the silhouettes in a gait sequence and
NT is the number of silhouettes.

Let Ti, Ri denote the templates corresponding to the ith and
the jth subjects in the test database and the reference database re-
spectively. Their distance is calculated using the following distance
metric

d (Ti, Rj) = ‖Ti − Ri‖ = ‖ 1

NTi

NTi∑
α=1

tiα − 1

NRj

NRj∑
β=1

rjβ‖ (2)

where ‖ · ‖ is the l2-norm and tiα, rjβ are the silhouettes belonging
to the ith test subject and jth reference subject respectively. The
associated frame indices α and β run from 1 to the total number of
silhouettes in a sequence (NTi and NRj respectively). Essentially,
a template is constructed for each subject by averaging all possible
silhouettes, and then the Euclidean distance between two templates
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is calculated and used as their dissimilarity measure. This means that
a smaller template distance corresponds to a closer match between
two compared subjects.

Fig. 1. Camera arrangement in the CMU Motion of Body (MoBo)
database. Six cameras are oriented clockwise in the east, southeast,
south, southwest, northwest, north, with the walking subject facing
toward the south.

In order to evaluate the contribution of various viewing direc-
tions in the human gait recognition, we choose the Motion of Body
(MoBo) database [12] from the Carnegie Mellon University (CMU)
which contains walking subjects captured from six cameras located
in positions as shown in Fig. 1. The database consists of walking se-
quences of 23 male plus 2 female subjects, who were recorded per-
forming four kinds of activities, i.e., fast walk, slow walk, etc. We
first take bounding boxes of silhouettes for the subjects, then align
and normalize all silhouettes into uniform dimensions, i.e., 128 pix-
els tall and 80 pixels wide, in order to eliminate height variations
among the walking subjects in the experiment. We use five (see Fig.
2) out of the available six viewing directions omitting the north view,
since it is practically identical to the south view, i.e., the frontal view.
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Fig. 2. Available views for multiview gait recognition (upper row)
and templates constructed using the five available views (bottom
row).

3. COMBINATION OF DIFFERENT VIEWS USING A
SINGLE DISTANCE METRIC

In this section, we propose a novel method for the combination of
results from different views, in order to improve the performance of
a gait recognition system based on a single view. In our approach,
we use weights in order to reflect the importance of each view during

the combination. This means that instead of using a single distance
for the evaluation of similarity between walking persons i and j, we
use multiple distances between the respective views and combine
them in a total distance which is given by

D (Ti, Rj) =

V∑
v=1

wvdv (Ti, Rj) (3)

where V is the total number of available views. Therefore, our task
is to determine the weights wv , which yield smaller total distance
when i = j, and larger when i �= j

Suppose that dfv, v = 1, 2, ..., V are random variables rep-
resenting the distances between a test subject and its correspond-
ing reference subjects (i.e., “within class” distance), and dbv, v =
1, 2, ...V are random variables representing the distances between
a test subject and a reference subject other than its corresponding
subject (i.e., “between class” distance).

In general, in order to maximize the efficiency of our system, we
would like the weighed distance Df between corresponding subjects
in the reference and test databases

Df =

V∑
v=1

wvdfv = wT · df (4)

to be smaller than the weighed distance between the non-corresponding
subjects

Db =

V∑
v=1

wvdbv = wT · db (5)

A recognition error takes place whenever Db < Df . Therefore,
the probability of error is

Pe = P (Db < Df ) = P
(
wT · (db − df ) < 0

)
(6)

We define the random variable z as

z = wT · (db − df ) (7)

if we assume that db and df are normal random vectors, then z is a
normal random variable with Probability Density Distribution

P (z) =
1√

2πσz

e
− 1

2
(z−mz)2

σ2
z (8)

where mz is the mean value of z, σz is the variance of z.
Therefore, using (7) and (8), the probability of error in (6) is

expressed as

Pe = P (z < 0) =

∫ 0

−∞

1√
2πσz

e
− 1

2
(z−mz)2

σ2
z dz (9)

Furthermore, if q = z−mz
σz

, then the above expression is equiv-
alent to

Pe =

∫ − mz
σz

−∞

1√
2π

e−
1
2 q2

dq (10)

The probability of error can therefore be minimized by minimiz-
ing −mz

σz
, or equivalently by maximizing mz

σz
. To this end, we have

to calculate mz and σz . If E{·} denotes statistical expectation, then
the mean value of z is

mz = E{z} = E{wT (db − df )}
= wT (E{db} − E{df}) = wT

(
mdb − mdf

)
(11)
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where mdb and mdf are the mean vectors of db and df . The vari-
ance of z is

σ2
z = E{(z − mz)

2}
= E{

(
wT (db − df ) − wT

(
mdb − mdf

))2}
= E{wT (db − mdb) (db − mdb)

T w

−wT (db − mdb)
(
df − mdf

)T
w

−wT
(
df − mdf

)
(db − mdb)

T w

+wT
(
df − mdf

) (
df − mdf

)T
w} (12)

If we assume that db and df are independent, then

σ2
z = wT · E{(db − mdb) (db − mdb)

T } · w
+wT · E{

(
df − mdf

) (
df − mdf

)T } · w
= wT · Σdb · w + wT · Σdf · w (13)

Therefore, the optimization problem becomes equivalent to
maximizing

m2
z

σ2
z

=
wT ·

(
mdb − mdf

)
·
(
mdb − mdf

)T · w
wT · Σdb · w + wT · Σdf · w

=
wT · Σdc · w

wT ·
(
Σdb + Σdf

)
· w (14)

where
Σdc =

(
mdb − mdf

)
·
(
mdb − mdf

)T
(15)

The maximization of the above quality is reminiscent of the opti-
mization problem that appears in two-class linear discriminant anal-
ysis. Trivially, the ratio can be maximized by determining a vector
w that satisfies [13]

Σdc · w = Λ
(
Σdb + Σdf

)
· w (16)

for some Λ. In the case that we are considering, the optimal w is
given by

w =
(
Σdb + Σdf

)−1 ·
(
mdb − mdf

)
(17)

If we assume that the distances corresponding to different views are
independent, then(

Σdb + Σdf

)−1
=⎛

⎜⎜⎜⎜⎜⎝

1
σ2

db1
+σ2

df1

0 . . . 0

0 1
σ2

db2
+σ2

df2

. . . 0

...
...

. . .
...

0 0 . . . 1
σ2

dbV
+σ2

dfV

⎞
⎟⎟⎟⎟⎟⎠ (18)

where V is the total number of available views. Therefore, the opti-
mal weight vector is

w =

(
mdb1 − mdf1

σ2
db1

+ σ2
df1

mdb2 − mdf2

σ2
db2

+ σ2
df2

· · · mdbV − mdfV

σ2
dbV

+ σ2
dfV

)T

(19)
Of course, the practical application of the above theory requires

the availability of database (other than the test database) which will
be used in conjunction with the reference database for the determi-
nation of mdb , mdf , σdb , σdf . In our experiments we used the CMU
database of individuals walking with a ball for this purpose.

In the sequel, we will use the weight vector in (19) for the com-
bination of views in multiview gait recognition.

4. EXPERIMENTAL RESULTS

For the experimental evaluation of our methods, we used the Mo-
tion of Body (MoBo) database from the Carnegie Mellon University
(CMU). The CMU database has 25 subjects walking on a treadmill.
This is an artificial setting that might affect the results. However,
using this database was essentially our only option since this is the
only database that provides several views. We used the “fast walk”
sequences as reference and the “slow walk” as test sequences. We
also used the “with a ball” sequences in conjunction with the ref-
erence sequences for the determination of the weights in (19). The
comparisons of recognition performance are based on Cumulative
Match Scores at rank 1 and rank 5. Rank 1 results report the per-
centage of subjects in a test set that were identified exactly. Rank
5 results report the percentage of test subjects whose actual match
in the reference database was in the top 5 matches. In this section,
we present the results generated by the proposed view combination
method. These results are compared to the results obtained using
independent views and other combination methods.

Initially, we tried several simple methods for the combination of
the results obtained using the available views. Specifically, the total
distance between two subjects was taken to be equal to the mean,
max, min, median, and product rule of the distances corresponding
to each of the five viewing directions. Such combination approaches
were originally explored in [14]. As shown in Figure 3 and Table
1, among all the above combination methods, the most satisfactory
results were obtained by using the Product and Min combination
rules.
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Fig. 3. Cumulative Match Score for the proposed and the other five
combination methods

Subsequently, we applied the proposed methodology for the de-
termination of the weights in Eq. (3). Based on Eq. (19), the weights
for the combination of the distances of the available views were cal-
culated and are tabulated in Table 2. As seen, the most suitable views
seem to be the frontal (east) and the side (south) views since these
views are given the heavier weights.

The above conclusion is experimentally verified by studying the
recognition performance that corresponds to each of the views inde-
pendently. The Cumulative Match Scores and the recognition rates
that are achieved using each view as well as those achieved by the
proposed method are shown in Table 1. As it can be seen, the south
and the east views have the highest recognition rates, as well as the
highest weights, which means that the weights calculated by the pro-
posed method correctly reflect the importance of the views. The re-
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Single- / Combined-views Method Rank 1(%) Rank 5(%)

East 84 92

Southeast 64 76

South 88 96

Northwest 76 92

Southwest 72 76

Mean 80 92

Median 84 88

Product rule 88 96

Max 72 80

Min 88 96

Weighed (Proposed) 92 96

Table 1. The recognition rates for the single-view and combined-
views methods.

View E SE S NW S

Weight 0.3332 0.0603 0.4036 0.1188 0.0842

Table 2. The weights calculated by the proposed method.

sults obtained by the proposed combination method are generally
better than those obtained from single views.

The proposed system was also evaluated in terms of verification
performance. In an access control scenario, this means calculating
the probability of positive recognition of an authorized subject ver-
sus the probability of granting access to an unauthorized subject. In
Table 3, verification results are presented at 5%, 10% and 20% false
alarm rate for the proposed method and the existing methods. As
seen, within the five viewing directions, the frontal (east) and side
(south) views have the best performances; and among the five exist-
ing combination methods, the Min method obtains the best results.
As expected, the proposed method has improved verification perfor-
mance, in comparison to any of the single-view methods as well as
in comparison to the other methods for multiview gait recognition.

Single-view / Verification Rate (%)
Combined-views Method FAR 5% FAR 10% FAR 20%

East 88 96 96

Southeast 68 72 76

South 92 96 100

Northwest 80 92 92

Southwest 76 76 84

Mean 88 92 96

Median 92 94 96

Product Rule 92 96 96

Max 72 76 84

Min 92 96 100

Weighed (Proposed) 96 100 100

Table 3. The verification rates for the single-view and combined-
views methods.

5. CONCLUSION

In this paper, we investigated the availability of multiple views in
the gait recognition task using the Motion of Body (MoBo) database
from the Carnegie Mellon University (CMU). We showed that each
view has unequal discrimination power and therefore has unequal

contribution to the task of gait recognition. A novel approach was
proposed for the combination of the results from different views into
a common distance metric for the evaluation of similarity between
gait sequences. By using the proposed method, which uses different
weights in order to exploit the different importance of the views, im-
proved recognition performance was achieved in comparison to the
results obtained from individual views or by using other combination
methods.
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