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ABSTRACT

Clustered-dot halftones are extensively utilized in hardcopy
printing. Modulation of the dot orientation in these halftones
offers an avenue for data embeddingwhich has been exploited
in a number of different methods. We consider the capacity
of these channels, modeling them as binary orientation input
channels with vector valued output detection statistics. We
derive upper bounds on the capacity for three channel condi-
tional distributions corresponding to sub-Gaussian, Gaussian
and super-Gaussian distributions. Using experimentally es-
timated channel parameters our bounds reveal that channel
capacity has noticeable variations as a function of gray level.
Highlights, shadows and mid-tones offer negligible capacity,
on the contrary the regions between highlights and mid-tones
or shadows and mid-tones offer high capacity for data embed-
ding.

Index Terms— Orientation modulation halftone channel,
capacity, print watermark

1. INTRODUCTION

Digital halftoning is extensively employed for the purpose of
reducing an original continuous tone (typically 8 bits/pixel)
image to a 1 bit/pixel binary image that is suitable for printing
on binary output devices such as lithographic printing presses,
laser and inkjet printers, etc. For a variety of applications, the
capability to imperceptibly embed data in printed documents
is desirable(see, for example [1]). Accordingly, a number of
methods have been proposed for embedding data in printed
halftone images[2, 3, 4, 5, 6, 7, 8, 9]. A signi cant class of
techniques is the set of methods that utilizes the orientation of
clustered halftone dots for the purpose of embedding [5, 10,
11]. These methods utilize elliptic shaped clustered halftone
dots whose orientation is varied in order to embed information
in the printed document.

The process of embedding in orientation is well suited to
halftone print-processes. The halftoning relies on the fact that
the viewer perceives a spatial average of the halftones and al-
terations of the dot orientation do not change the average gray
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level. Orientation based embedding therefore introduces low
visual distortion. For orientation based embedding, at the de-
coder, the encoded orientation must be identi ed from a scan
of the printed image. This typically involves the use of sta-
tistical criteria[10, 11] employed in conjunction with a proba-
bilistic model of print-scan channel. A characterization of the
apposite print-scan channel is therefore desirable: both in or-
der to adapt the embedding to the characteristics of the print-
scan distortion channel and to quantify the limits of embed-
ding. The former is also desirable from the now well-known
analogy between robust data hiding and communications with
side information [12].

This paper provides capacity upper bounds for orienta-
tion modulation halftone channels. Our work reveals that the
channel capacity shows considerable variation as a function of
the gray level. This result helps in identifying hiding friendly
gray levels.

2. ORIENTATION MODULATION HALFTONE
CHANNELS

In the case of data embedding by halftone orientation modula-
tion in clustered dot halftones, the inherent periodic structure
of the halftones provides a mechanism for synchronization.
In particular, the periodicity of the halftone grid can be read-
ily estimated from a scan of the printed image (for example,
by computing a Fourier transform and nding the peaks cor-
responding to the principal frequency). Once this periodicity
is recovered, the synchronization can be inferred [11, 13]. We
therefore consider the problem of capacity under the assump-
tion of synchronization. Furthermore, in order to simplify our
analysis, we analyze the capacity for a single gray level and
examine the variation in capacity as the gray level is varied.

For the purpose of estimating their capacity, orientation
modulation channels can be represented by the model shown
in Fig. 1. In this model, the channel input is the orientation
Θ for the halftone dot and the output are the (vector-valued)
detection statistics Σ obtained from the printed and scanned
version of the dot. These statistics may correspond, for in-
stance, to binary correlations in the case of DataGlyphs [14],
or to image moments estimated from the scans [11]. In prac-
tical printing systems, the process of printing inherently in-
troduces a directional asymmetry, which when coupled with
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arbitrary orientation modulation results in an unintended and
undesirable variation in the average gray level of the printed
halftone. Thus in order to limit perceptible distortion practi-
cal data embedding systems based on orientation modulation
limit the orientations of the dots to two orthogonally oriented
directions with respect to which the printing process is sym-
metric, for example ±45 deg with respect to the direction of
paper feed. This symmetry ensures that the orientation mod-
ulation causes no change in average gray level of the printed
halftone - thus eliminating (or at least very signi cantly re-
ducing) potential embedding artifacts. Accordingly for the
purpose of estimating capacity, we assume that the input Θ is
binary.

Orientation

Channel

Print Scan
Detection
Statistics

ΣΘ

Fig. 1. Orientation modulation channel model.

For our model of the orientation modulation halftone
channel, the expression for capacity can be written as

C = max
p(θ)

I(Θ; Σ)

= max
p(θ)

[
h(Σ) − h(Σ|Θ)

]
(1)

where h(Σ) denotes the differential entropy of the random
vector Σ representing the detection statistics, and h(Σ|Θ) de-
notes the conditional differential entropy of Σ given the ori-
entation Θ.

3. CAPACITY BOUNDS FOR ORIENTATION
MODULATION CHANNELS

In this section, we give upper bounds for the capacity of the
orientation modulation channel for various channel distribu-
tions. We bound the channel capacity by nding an upper
bound for the joint entropy of detection statistics h(Σ) and
evaluating the conditional entropy h(Σ|Θ) in (1). 1

Noting that Θ is binary we can write h(Σ|Θ) =
2∑

i=1

p(θi)

h(Σ|Θ = θi) which substituted in the capacity expression
of (1), yields

C = max
p(θ)

[
h(Σ) −

2∑
i=1

p(θi)h(Σ|Θ = θi)
]

(2)

where Θ represents the binary orientation and Σ is a n×1 vec-
tor that holds detection statistics along different orientations.
Let KΣ denote the n × n covariance matrix of the detection

1This is readily generalizable to the general M -ary case.

statistics Σ. Observing that among all n-dimensional distri-
butions with covariance KΣ, the Gaussian distribution has the
maximum differential entropy [15], we see that

h(Σ) ≤ [
1
2

ln
[
(2πe)n det(KΣ)

]
(3)

where the right hand side is obtained from the expression for
the differential entropy of a multivariate gaussian with covari-
ance KΣ. Using (3) in (2), we obtain an upper bound on the
capacity as

C ≤ max
p(θ)

[1
2

ln
[
(2πe)n det(KΣ)

]− 2∑
i=1

p(θi)h(Σ|Θ = θi)
]

(4)

3.1. Channel Model

Though the channel model shown in the Fig. 1 is valid for
orientation modulation channels with any detection statistics,
we speci cally focus on moment based detection in this paper.

Evaluation of the multi-dimensional conditional entropy
h(Σ|Θ) is a hard task especially when the corresponding
multi-dimensional density function is not available. Here, the
detection statistics vector Σ comprises of moments σx and σy

evaluated along the two orthogonal directions corresponding
to the input modulation [11]. For the two orientation case, as-
suming conditional independence, the joint density function
of output statistics becomes:

fΣ|Θ(σ|θ) = fΣx|Θ(σx|θ)fΣy|Θ(σy |θ) (5)

Corresponding joint entropy is hence expressed as:

h(Σ|Θ) = h(Σx|Θ) + h(Σy|Θ) (6)

Figure 2 illustrates the simpli ed probabilistic model of the
orientation channel.

σx

σyΘ fΣy(σy|Θ)

fΣx(σx|Θ)Θ

Fig. 2. Simpli ed probabilistic model for the channel.

In previous work [11], we validated this assumption of
conditional independence2(separable) by empirically obtain-
ing estimates of 2 × 2 covariance matrices for different gray
levels. It follows that the upper bound for the capacity be-
comes

C ≤ max
p(θ)

[1
2

ln
[
(2πe)2 det(KΣ)

]

−
2∑

i=1

p(θi)
[
h(Σx|Θ = θi) + h(Σy|Θ = θi)

]]
(7)

2Strictly, conditional uncorrelatedness.
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Evaluating the conditional entropy h(Σx|Θ = θi), h(Σy|
Θ = θi) requires a characterization of conditional densi-
ties fΣx|Θ(σx|θ) and fΣy|Θ(σy |θ). The symmetry described
earlier for the embedding process and the print-scan chan-
nel motivates the following symmetry constraints on their
conditional densities.

fΣx|Θ(t|0) = fΣy|Θ(t|1) , ∀t (8)

fΣx|Θ(t|1) = fΣy|Θ(t|0) , ∀t (9)

Additionally, we observe that these conditional densities
vary depending on the gray level. In order to accommodate
this variability and the variation over different printers, we
model the channel conditional densities using three distinct
parametrized families belonging to sub-gaussian (γ < 3),
gaussian (γ = 3) and super-gaussian (γ > 3) categories
where γ denotes the widely accepted shape descriptor, i.e.,
the kurtosis [16].

3.1.1. Laplacian Channel (Super-Gaussian)

The probability density function of Laplacian distribution is
de ned as fX(x) = 1

2λexp(− |x−μ|
λ ). The differential en-

tropy is computed as

h(X) = −
∫ ∞

−∞
fX(x) ln(fX(x))dx

=
∫ ∞

−∞
ln(2λ)fX(x)dx +

∫ ∞

−∞

|x − μ|
λ

fX(x)dx

= ln(2λ) + 1 (10)

Then, each conditional entropy in (7) is replaced with the ex-
act entropy expression for the laplacian channel and the upper
bound for the capacity is given by

C ≤ max
p(θ)

[1
2

ln
[
(2πe)2 det(KΣ)

] − 2∑
i=1

p(θi)
[
ln(2eλxi)

+ ln(2eλyi)
]]

(11)

λxi and λyi are parameters of (marginal) conditional den-
sity functions of moments where conditioning is performed
on two orthogonal horizontal and vertical orientations.

3.1.2. Gaussian Channel

The probability density function for Gaussian channel is

fX(x) = 1
s
√

2π
exp

(− (x−μ)2

2s2

)
where s denotes the standard

deviation of the distribution. Differential entropy for a Gaus-
sian is well-known [15] and given by h(X) = ln(s

√
2πe).

Substituting the conditional entropies in (7), the upper bound
for the capacity is found as:

C ≤ max
p(θ)

[1
2

ln
[
(2πe)2 det(KΣ)

] − 2∑
i=1

p(θi)

[
ln(sxi

√
2πe) + ln(syi

√
2πe)

]]
(12)

sxi and syi i = 1, 2 are standard deviations of conditional
densities of moments.

3.1.3. Triangular Channel (Sub-Gaussian)

The probability density function of triangular distribution is
de ned as:

fX(x) =

{
2(x−a)

(b−a)(c−a) for a ≤ x ≤ c
2(b−x)

(b−a)(b−c) for c ≤ x ≤ b

The differential entropy is calculated as

h(X) = −
∫ c

a

fX(x) ln[fX(x)]dx−
∫ b

c

fX(x) ln[fX(x)]dx

The rst integral is computed as

h(X) =
∫ c

a

ln[(b − a)(c − a)]fX(x)dx

−
∫ c

a

fX(x) ln(2(x − a))dx

=
(c − a)
(b − a)

ln[(b − a)(c − a)] − 1
(b − a)(c − a)∫ c

a

2(x − a) ln[2(x − a)]dx

=
(c − a)
(b − a)

(
ln

[(b − a)
2

]
+

1
2

)
(13)

Second integral may be evaluated similarly and the differen-
tial entropy for the triangular distribution becomes

h(X) =
1
2

+ ln(
b − a

2
) (14)

Hence, the upper bound for the channel capacity is given by:

C ≤ max
p(θ)

[1
2

ln
[
(2πe)2 det(KΣ)

] − 2∑
i=1

p(θi)

[1
2

+ ln(
bxi − axi

2
) +

1
2

+ ln(
byi − ayi

2
)
]]

(15)

Note that in the expressions for the capacity upper bounds in
the preceding subsections, KΣ depends on p(θ). In each of
the cases, it can be shown that an equiprobable distribution
for p(θ) achieves the maxima that de nes the capacity upper
bounds.

4. CAPACITY FOR DIFFERENT GRAY LEVELS

We perform an experiment to identify the gray levels that of-
fer high capacity and are therefore appropriate for embedding.
For this purpose, channel parameters need to be estimated ex-
perimentally for each gray level.
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We utilized a 2400 dpi xerographic printer and generate 8
inch by 8 inch constant gray level images with halftone screen
frequency of 75 lines per inch. From the scans of the printed
image we compute moments in the ±45 deg directions for
each of the embedding orientations. We estimate the param-
eters of various conditional densities in Sections 3.1.1- 3.1.3
via expectation maximization [17].

Plots of channel capacity bounds as a function of gray
level are shown in Fig. 3. For simplicity, we plot capacity as-
suming Gaussian and Laplacian channels for all gray levels.
As evident from the plot, the capacity is negligibly small in
the mid-tones (100 − 130), highlights(< 40) and shadows(>
180). The region between highlights and mid-tones, and mid-
tones and highlights offers considerably higher capacity. The
“double hump” shape for the capacity follows intuition as the
number of available halftone con gurations is severely re-
stricted in highlights, shadows and mid-tones. In the extreme
case of purely black or white regions, only a single halftone
con guration is possible and hence the capacity is zero. Like-
wise, at mid-tones the number of available halftone con g-
urations is very small. The mismatch in the heights of the
two peaks is attributed to the asymmetric dot gain that occurs
in the physical printing process and is more pronounced in
darker as opposed to lighter regions.
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Fig. 3. Capacity bounds for the orientation modulation channel with Gaus-
sian and Laplacian channel conditional distributions. Gray level range is from
0 to 255. Gray level 0 corresponds to white and gray level 255 corresponds
to black.

5. CONCLUSION

We investigate the capacity of orientation modulation chan-
nels for data embedding in printed halftones. We obtain up-
per bounds for the capacity of these channels as a function
of the average gray level. To account for varying channel
characteristics encountered in practice, we select examples
from each of the super-Gaussian, Gaussian and sub-Gaussian
distribution categories and compute capacity bounds in each

case. Evaluations of the capacity bounds using empirically
estimated channel parameters from actual prints, reveal that
highlights, shadows and mid-tones offer small capacity, but
in regions from white to mid-tone and mid-tone to black high
capacity is available. Although we speci cally focus on mo-
ment based detection scenario in this paper, similar capacity
bounds are applicable to other orientation modulation chan-
nels e.g. with correlation based detection.

.
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