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ABSTRACT

With widespread availability of digital images and easy-to-
use image editing softwares, the origin and integrity of digital
images has become a serious concern. This paper introduces
the problem of image acquisition forensics and proposes a
fusion of a set of signal processing features to identify the
source of digital images. Our results show that the devices’
color interpolation coefficients and noise statistics can jointly
serve as good forensic features to help accurately trace the
origin of the input image to its production process and to dif-
ferentiate between images produced by cameras, cell phone
cameras, scanners, and computer graphics. Further, the pro-
posed features can also be extended to determining the brand
and model of the device. Thus, the techniques introduced in
this work provide a unified framework for image acquisition
forensics.
Index Terms— Multimedia forensics, image acquisition

forensics, color interpolation, noise statistics.

1. INTRODUCTION
Digital imaging technologies have seen tremendous growth
in recent decades, and such digital imaging devices as digital
cameras, scanners, cell phone cameras, video cameras, and
camcorders have been used for a large number of day-to-day
activities. Digital images captured by these imaging devices
have been used in a number of applications from military,
reconnaissance, and surveillance to consumer photography.
When the image has security implications, or when the im-
age’s legitimacy is called into question, methods are needed
to non-intrusively analyze the distinguishing features of the
image in order to learn more about its origin. Knowledge of
an image’s acquisition source can be helpful in determining
the authenticity of the image, as well as in determining who
is responsible for creating the image.
In this work, we introduce image acquisition forensics as

a new approach for forensic analysis aiming to determine the
device type that was used to acquire the image in question. We
present a feature based classification approach to facilitate im-
age acquisition forensics, and show that the proposed meth-
ods provide a very high accuracy in differentiating between
images from different sources such as cell phones cameras,
standalone cameras, scanners, and computer-graphics. Fur-
ther, the proposed methods can be extended to determine the
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brand and model of the device that was used to capture the
image. To our best knowledge, this is the first work on im-
age acquisition forensics that provides a unified framework
to analyze images from four different sources to identify ac-
quisition device type, and further extending such analysis to
identify the device brand and model.
Related prior studies in multimedia forensics have had

reasonable success in identifying an image by device brand
or model, while assuming that the device acquisition type is
known a priori. Features from such camera components as
color interpolation and white balancing have been employed
to differentiate between different brands and models of digital
standalone cameras [1, 2], and cellphone cameras [3]. Noise
features obtained by studying sensor imperfections have been
used to identify camera model and set [4] and further ex-
tended to distinguish between images produced from differ-
ent scanners [5, 6]. All these works inherently assume the
knowledge of the image acquisition type. Recently, the work
in [7] proposed a set of noise features for classifying images
produced using different sensor types; however, their work is
restricted to differentiating scanned and non-scanned camera
images. Compared to the prior work, the methods proposed
in this paper are more widely applicable. Our results with
five different models of cell phones, five models of standalone
cameras, and four models of scanners have demonstrated ex-
cellent forensic performance.
The rest of the paper is organized as follows. Section 2

provides a description of the image acquisition process in dig-
ital imaging devices and provides the basis of the proposed
features discussed in Section 3. Simulation results are pre-
sented in Section 4, and the final conclusions are drawn in
Section 5.

2. IMAGE ACQUISITION PROCESS IN
DIGITAL IMAGING DEVICES

Fig. 1 shows the basic blocks in different types of image ac-
quisition devices. The exact implementations vary among cell
phone cameras, standalone cameras, and scanners, due to dif-
ferences in color sensor type and alignment. Standalone dig-
ital cameras and scanners most commonly use charge cou-
pled devices (CCD) to record the voltages generated by the
light exposure corresponding to a particular color. Most cell
phone cameras, on the other hand, use CMOS image sensors
rather than CCDs for sampling the real-world scene as they
are cheaper, faster, and consume much less power; however,
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Fig. 1. Image acquisition process in digital imaging devices

CMOS sensors produce more noise than CCDs.
To capture the three basic color components correspond-

ing to red, green and blue, scanners typically employ a tri-
linear color filter array (CFA). Using the trilinear CFA along
with the line-by-line acquisition mode enabled by the motion
system, scanners can directly capture all the three color com-
ponents of each raster line. On the contrary, digital cameras
and cell phone cameras use a square CFA, such as the Bayer
pattern as shown in Fig. 1, to capture the entire 2-D scene in
one shot. Therefore, in standalone cameras and cell phone
cameras, only one color is obtained for each pixel and the re-
maining two colors for any given pixel are estimated through
an interpolation process, which in most cases are unique to
each model of camera [1].
After color interpolation, the interpolated images go via

a post-processing stage. This stage may include operations
such as white-balancing, noise reduction, color correction,
and JPEG compression. Standalone cameras either store the
image in a proprietary raw format with no compression or per-
form JPEG compression with a quality factor close of 95 to
100 to minimize information loss; however, cell phone cam-
eras often use lower quality by default, in order to keep file
size smaller and conserve memory (the cell phone cameras
we studied employed JPEG compression with quality factors
ranging from 65-85). For this reason as well as the extra noise
from the CMOS image sensors, picture quality in cell phone
pictures is not as good as that of digital cameras.

3. FEATURE EXTRACTION
To create a successful identification scheme, one must first
find sources of variation among different types of devices and
between different models of a device. Then, these differences
can be extracted and represented as unique features of each
device which can be used for identifying the source of an un-
known new image. In our work, we use the dissimilarities
in the image acquisition process of the imaging devices to
develop two groups of features, namely color interpolation
coefficients and the noise features, and use these features for
image acquisition forensics.
Color Interpolation Coefficients as Features: Most digital
standalone cameras and cellphone cameras employ different
types of color interpolation methods [1], and this difference
can be exploited forensically to distinguish them from other
types of imaging devices. To extract the color interpolation
coefficients, we start by assuming the Bayer pattern for the
CFA, which gives the locations of the pixels that are directly
obtained from the sensor and those that are interpolated. We
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Fig. 2. Statistical noise feature extraction via (a) image denoising,
(b) wavelet analysis, and (c) neighborhood prediction.

divide the image pixels into three different types of regions
based on the local gradient values as (i) regions with signifi-
cant horizontal gradient, (ii) regions with significant vertical
gradient, and (iii) smooth regions. In each of these three re-
gions, we approximate color interpolation to be linear, and
represent the interpolated pixels as a weighted summation of
its neighboring pixels that are directly obtained from the sen-
sor. The set of equations obtained in this way is then solved
to compute the interpolation coefficients [1].

Statistical Noise Feature Extraction: Noise occurs when
photoelectrons are created in the imaging device. One ex-
ample of measurable noise is dark signal non-uniformity, or
variations between pixel voltage under conditions of no light.
Photo response non-uniformity can be measured as the vari-
ations between pixel voltage under light with fixed intensity.
While the imaging devices apply post-processing to compen-
sate for and reduce noise in the image, some statistical prop-
erties of noise still remain unaltered depending on the specific
nature of the sensors and filters used. In our work, we obtain
noise features via three different types of analysis as shown in
Fig. 2 and described below:
• Features from image denoising: We apply different types
of denoising algorithms to the input image, and compute the
mean and the standard deviation of the natural logarithm of
the estimated noise magnitudes to obtain the first set of fea-
tures. For our work, we apply four different denoising algo-
rithms to an image: linear filtering with an averaging filter
(filter size 3 × 3), linear filtering with a Gaussian filter (filter
size 3×3 with standard deviation 0.5), median filtering (filter
size 3 × 3), and Wiener adaptive image denoising (neighbor-
hood sizes 3× 3 and 5× 5). These four denoising algorithms
capture different statistical properties of the sensor noise giv-
ing us 30 different features [5].
• Features from wavelet analysis: We apply wavelet analy-
sis to the image to measure the statistical properties of noise
in the frequency domain. As a first step, we normalize the
image to unit energy as Ĩ(i, j) = I(i,j)
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where I(., .) and Ĩ(., .) represent the input image and the nor-
malized image, respectively. We then perform a 2-D one level
wavelet decomposition of Ĩ to get the LH1, HL1, and HH1

subbands. The mean, μ, and the variance, σ2, of the sub-
band coefficients are obtained and the variance forms the sec-
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ond set of features [5]. We quantify the goodness of fitting
this Gaussian distribution to the distribution of the wavelet
subband coefficients to obtain additional features. Let p(y)
and q(y) denote the probability density functions of the Gaus-
sian distributionN (μ, σ2) and the distribution of the subband
wavelet coefficients, respectively. We quantify the goodness
of Gaussian fitting by measuring the distance between p(y)
and q(y) as f (4)(I) =

∑
i |p(yi) − q(yi)|Δy, where i is the

index of the histogram bins, Δy is the length of the bin, and
p(yi) and q(yi) denote the histogram values at the bin centers.
This gives a total of 18 features.
• Features from neighborhood prediction: Lastly, we em-
ploy neighborhood prediction and measure the error in the
prediction of neighboring pixels in smooth regions. This is
based on the observation that the image acquisition noise in
the smooth regions of the image results in non-trivial predic-
tion errors which can provide forensic evidence about the ori-
gin of the image. Given an image I , we first normalize it to
obtain Ĩ as before and identify its smooth regions by examin-
ing the local image gradient values. The pixels in the chosen
smooth regions are then expressed as a weighted summation
of its neighborhood values to obtain a set of linear equations.
More specifically, we predict each pixel value bi in a given re-
gion using a linear model on its eight surrounding neighbors
{ai,1 − ai,8}: b̂i =

∑8
k=1 xkai,k. The set of linear equations

thus obtained are solved under the non-negativity constraints
xk ≥ 0 to obtain xk. The absolute prediction errors are then
obtained as Δbi = |b̂i − bi|. The mean and the variance of
Δbi over all the pixels in the smooth regions form our third
set of 12 statistical noise features [5].

4. SIMULATION RESULTS AND DISCUSSIONS
This section presents the experimental results by applying the
proposed features for image acquisition forensics to identify
both the device type and the brand/model of the device that
was used to acquire the image. For our study, we use 100
images from each of the four scanner models (Epson Per-
fection 2450 photo, Acer Prisa Acerscan, Canon CanoScan
D1250U2F, andMicrotek ScanMaker 3600), five different cell
phone cameras models (Nokia 6102, Motorola V550, Sam-
sung c417, Sony Ericsson W810, and Audiovox CDM-8910),
and five standalone cameras models (Canon Powershot A75,
Canon Powershot S410, FujiFilm Finepix S3000, Casio QV-
UX2000, and Minolta DiMage F100). A separate set of 100
computer graphics (CG) images were obtained from [8]. The
sample images were taken in completely random conditions,
without any controlled setup in order to simulate the challeng-
ing non-intrusive testing conditions. The image dataset thus
simulates real-world data in terms of lighting, color, texture,
and subject. The color interpolation coefficients and the noise
features were estimated from each of the 1500 images in our
database and employed for subsequent studies.
Identifying Image Acquisition Device: For our study, 100
images from each device type (cell phone camera, standalone

Table 1. Confusion matrix for device type identification
Device Phone camera Standalone Camera Scanner CG
Phone camera 93% 2% 0% 5%
Standalone 1% 98% 1% 0%
Scanner 1% 3% 94% 2%
CG 4% 2% 4% 90%

camera, and scanner) were selected with an equal number
from each model, and all CG images were used, to create
four classes of 100 images each. A randomly chosen set of 99
images from each class were used in training the SVM clas-
sifier, and the remaining image was used in testing to obtain
the leave-one-out performance. The experiment was repeated
100 times with different set of training images and the aver-
age confusion matrix is shown in Table 1. Here, the (i, j)th

element of the matrix corresponds to the fraction of images
from source type−i classified as belonging to source type−j.
The main diagonal elements give the percentage of correct
identification. From the results in Table 1, we find that over-
all identification accuracy is 93.75%, suggesting that the pro-
posed features are good for identifying the source type.

Identifying Device Brand/Model: Once an image’s source
device has been determined, further analysis can be performed
using the same set of features to identify the particular brand
or model of the device that was used to capture the image. In
this subsection, we present the results for cell phone camera
identification in detail and similar results are also obtained for
scanner identification and camera identification.
• Cell phone camera identification: Finding the type of cell
phone camera from its output images poses additional chal-
lenges, compared to standalone cameras and scanners, due
to their lower image resolution, noisier image sensors, and
a higher rate of default JPEG compression. In our results
with cell phone cameras, we found that using interpolation
coefficients alone, rather than a combination of interpolation
coefficients and noise features, produced higher accuracies.
This result for cell phone cameras is expected because most
cell phone camera brands/models employ different algorithms
for color interpolation; and therefore, these coefficients alone
provide tell-tale evidence to distinguish images from different
brands/models. For our experiments with cell phone cameras,
we used a randomly chosen 90 random images for training
and the remaining 10 for testing, and the corresponding re-
sults are shown in Table 2. We find from the table that the av-
erage identification accuracy is close to 97.7% for five mod-
els, and this is significantly better than existing techniques
that produce average accuracies close to 92% over four cam-
era models from two different camera brands [3].
We test the robustness of the proposed system for post-

processing operations such as JPEG compression. To gen-
erate data, we compress the original cell phone camera im-
ages under different JPEG quality factors from 60 to 100.
The color interpolation coefficients are then obtained from
the compressed images and used as features for classifica-
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Table 2. Confusion matrix for cell phone camera identification
Cell Phone Nokia Motorola Samsung Sony Audiovox
Nokia 95.8% 0.4% 0% 3.8% 0%
Motorola 2.8% 97.2% 0% 0% 0%
Samsung 1.2% 0% 97.8% 0.2% 0.8%
Sony 2.4% 0% 0% 97.6% 0%
Audiovox 0% 0% 0% 0% 100%

tion. A randomly chosen 90 images were used in training
the classifier and the remaining 10 were used in testing. The
experiment was repeated 100 times and the average accura-
cies under different JPEG quality factor are shown in Fig. 3.
The figure shows that as the JPEG quality factor decreases,
the identification accuracy decreases as expected. Further, an
accuracy close to 91% is achieved even when the images are
compressed with a quality factor of 60.
We compare the performance of the proposed features for

cell phone camera identification with the higher order statis-
tical features introduced in [9]. In our experiments with [9],
we employ the same set of cell phone camera images (with 90
for training and 10 for testing) and examine the identification
accuracies as a function of JPEG quality factors. The perfor-
mance, averaged over 100 iterations, is shown alongside in
Fig. 3. The results suggest that the proposed features perform
at least 12% better in identifying the cell phone brand/model,
establishing the goodness of the proposed features.
• Scanner and standalone camera identification: For scanner
identification, we found that using a combination of interpo-
lation coefficients and noise feature parameters gave the best
results. 100 images from each of the four models of scan-
ners were used, with 90 random images used for training and
the remaining 10 used for testing. The overall identification
accuracy for scanner brand was 96.2%. Further, the identifi-
cation results were found to be robust to moderate levels of
post-processing operations such as JPEG compression, image
sharpening, gamma correction, and contrast enhancement.
Our results with standalone digital cameras suggests that

the best results for camera identification were obtained using
just the color interpolation coefficients, rather than using a
combination of interpolation coefficients and noise features.
In our experiments, we used a randomly selected set of 90
images from each of the five camera brands for training the
SVM classifier and tested it with the remaining 10 images.
The experiments were repeated over 100 times and we ob-
tained an overall average accuracy of 94.3% for identifying
the correct camera brand. These results establish the good-
ness of the proposed features for image acquisition forensics.

5. CONCLUSIONS
In this work, we have introduced a unified approach for image
acquisition forensics to identify both the type of image acqui-
sition device and the brand/model of the device. We have pro-
posed to jointly employ color interpolation coefficients and
noise statistics as features for forensic analysis. We show that
the combined set of features can provide tell-tale clues and

60 70 80 90 100
65

70

75

80

85

90

95

100

JPEG Quality Factor

Id
en

tif
ica

tio
n 

Ac
cu

ra
cy

Proposed Features
Higher Order Statistics

Fig. 3. Robustness to JPEG compression for cell phone camera
identification

help accurately trace the origin of the input image to its pro-
duction process and help differentiate between camera, cell
phone camera, scanner, and computer-graphics images. De-
tailed simulation results with five cell phone cameras, four
scanners, five digital cameras, and computer graphics images
suggest that the proposed techniques are very effective giv-
ing an overall accuracy around 93.75%. The proposed tech-
niques can also be extended to identify the brand and model
of such imaging devices as cell phone cameras with an accu-
racy close to 97.7%, scanners with an accuracy of 96.2%, and
standalone digital cameras with over 94.3% accuracy. Fur-
ther, the features introduced in this work are also robust to
post-processing operations such as moderate JPEG compres-
sion, demonstrating their effectiveness for image acquisition
forensics. Overall, the proposed technique provides a promis-
ing unified framework to establish the origin of digital images
with broad forensics applications.
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