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ABSTRACT

We pose the problem of tracing traitors, who have colluded to cir-
cumvent a multimedia fingerprinting system, as a sparse underdeter-
mined linear problem. We propose a range of detection algorithms,
based on sparse signal approximation, that span a tradeoff between
performance and complexity. These algorithms are superior to con-
ventional detection by correlation because they are collusion-aware.
The simplest algorithm among them is more expensive than correla-
tion by only a constant factor, and the second simplest one is more
expensive by only a factor linear in the maximum number of traitors.
We demonstrate that our proposed algorithms extend the robustness
of already deployed fingerprinting schemes under both linear and
nonlinear collusion attacks. For example, roughly twice as many
traitors can be traced reliably than by using correlation, under mean
or median collusion followed by compression.

Index Terms— Multimedia fingerprinting, digital watermark-
ing, sparse signal approximation, l1-norm minimization

1. INTRODUCTION
The proliferation of digitized media and the wide deployment of
broadband IP-based networks have changed the way people obtain
entertainment and information. Copying, modifying and distribut-
ing digital files are now commonplace. Multimedia fingerprinting,
which arose as a direct application of digital watermarking, serves
the purpose of tracing unauthorized redistribution of multimedia con-
tent. Spread spectrum watermarking [1], for example, embeds in-
dependent and identically distributed white Gaussian vectors (the
fingerprints) into certain frequency-domain coefficients of copies of
the original media signal. These fingerprinted copies are distributed
to authorized users. If a user redistributes a copy to unauthorized
users, the unique embedded fingerprint helps trace the traitor. If the
traitor tracer has access to the original media file, it subtracts it from
the unauthorized copy. Then it correlates the unauthorized copy
residual with all the fingerprints to identify the traitor. However,
several traitors may combine their fingerprinted copies to create a
new copy for which the correlation outputs for their fingerprints are
weakened. These collusion attacks pose a serious challenge to the
designer of the fingerprinting system. Research into traitor tracing
has progressed in two directions: collusion-resistant fingerprints and
collusion-aware detectors.

Collusion resistance of multimedia fingerprints was studied in [2].
Orthogonal fingerprints were recommended by [3], but orthogonal-
ity limits the number of fingerprints to their dimension, which is
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constrained by the information-hiding capacity of the media [4]. To
support more users, Trappe et al. proposed anti-collusion coded fin-
gerprints [5]. These fingerprints, when combined by any subset of
traitors up to a certain size, yield a unique correlation pattern with
respect to basis vectors. Fingerprints have also been designed by
projection onto convex sets, each of which describes a desired prop-
erty [6]. Robustness against linear collusion attacks, but not nonlin-
ear collusion attacks, can be described in this way.

The design of collusion-aware detectors has drawn less atten-
tion. Trappe et al. suggested a highly efficient tree-structured de-
tector for orthogonal fingerprints, and a greedy sequential detector
that identifies traitors one-by-one for anti-collusion coded finger-
prints [5]. Our contribution, in contrast, is a class of collusion-
aware detectors for arbitrary nonorthogonal fingerprints. As such,
these detectors are backwards-compatible with deployed correlation-
based fingerprinting systems and readily extend their traitor tracing
capability. Our approach, based on sparse signal approximation, has
much in common with the MIMO multiuser detection strategy of [7].

Section 2 casts traitor tracing as a sparse underdetermined lin-
ear problem and presents five detection algorithms that span a trade-
off between performance and complexity. In Section 3, we apply
three of these algorithms to traitor tracing in spread spectrum finger-
printing [1], and demonstrate improved robustness against linear and
nonlinear collusion attacks.

2. TRAITOR TRACING

To begin our formulation of traitor tracing, we represent each fin-
gerprint as a vector in the marking subspace of the media signal
space. (For example, in spread spectrum watermarking, the marking
subspace corresponds to certain frequency-domain coefficients.) Let
the dimension of the subspace be k and the number of fingerprints
be n. Define W to be the k × n matrix whose columns are the fin-
gerprint vectors. Let r be the unauthorized copy residual, projected
onto the marking subspace. Under approximately linear collusion by
the traitors,

r = Wu + z, (1)

where u is a sparse vector of length n with nonzero elements only
at the user indices corresponding to the traitors. Denote the number
of traitors (or the sparsity of u) to be the random variable T , taking
a maximum value t. The vector z captures any nonlinearity in the
collusion attack.

The traitor tracing problem is the recovery of the sparsity pattern
of u given W and r. Typically, the dimension k is limited [4], but
n is chosen large because it is the number of users of the system. So
we assume k � n, which makes the system very underdetermined.
We also assume that the maximum number of traitors t � k.
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2.1. Detection by Correlation
The conventional method of traitor tracing is correlation of the resid-
ual r with each of the fingerprint vectors. That is,

û = WTr, (2)

followed by thresholding the detection values û by a value θ to de-
termine the sparsity pattern. Detection by correlation has low com-
plexity; the matrix-vector multiplication is O(kn). But it is not
collusion-aware because each detection value (element of û) is a
function of its corresponding fingerprint vector (column of W) but
not the others.

2.2. Detection by Brute-Force Sparse Search
Collusion-aware detection is possible by brute-force search among
all possible combinations of sparsity patterns for û to find the small-
est that satisfies (1) for ‖z‖2 ≤ ε, an appropriate constant:

û = arg min ‖u‖0, such that ‖r − Wu‖2 ≤ ε. (3)

This approach is impractical since its complexity is exponential in n.
Furthermore, it is not clear how the detector should choose the value
ε to constrain the collusion nonlinearity z.

2.3. Detection by General Purpose Convex Optimization
A step towards tractable collusion-aware detection is the approxima-
tion of the l0-norm objective in (3) as l1:

û = arg min ‖u‖1, such that ‖r − Wu‖2 ≤ ε, (4)

followed by thresholding of the detection values û by θ to determine
the sparsity pattern. This makes the problem convex and solvable us-
ing general purpose optimization tools in polynomial time [8]. This
method is called basis pursuit for the case ε = 0 [9]. Several au-
thors [10–13] estimate how small the maximum sparsity t must be in
terms of properties of W to guarantee accurate signal recovery. Un-
fortunately, polynomial complexity in n remains too high for large
problems and it is still unclear how to choose ε.

2.4. Detection by the Method of Homotopy Continuation
The method of Homotopy continuation is a specific convex optimiza-
tion tool, efficient at approximating sparse solutions to underdeter-
mined problems [14]. It is best described by restating (4) as:

û = arg min(λ‖u‖1 + ‖r − Wu‖2
2), (5)

so that the solution to (4) for any ε > 0 is the solution to (5) for
some λ > 0. Homotopy solves (5) for all λ, starting from λ = ∞,
where the solution û = 0. The solution, as λ decreases, traces a
polygonal path with vertices corresponding to changes in the sparsity
pattern, as shown in [15]. The algorithm is iterative; each step either
increments or decrements the current sparsity pattern by exactly one
element to find the next vertex along the solution path. After a fixed
number of steps greater than the maximum sparsity t, the solution
û is thresholded by θ. This has two consequences. It effectively
resolves the ambiguity of λ in (5), and ε in (3) and (4). Also, since
the cost of each step is O(kn), the overall complexity is O(tkn).

2.5. Detection by Stagewise Orthogonal Matching Pursuit
Stagewise Orthogonal Matching Pursuit (StOMP) is another iterative
algorithm for estimating sparse solutions to underdetermined prob-
lems [16]. It differs from Homotopy in two major ways. It is a
greedy algorithm; each step can increment the sparsity pattern of the

solution û, but not decrement it. It also requires fewer steps than
Homotopy because each step can increment the sparsity by several
elements, not just one. Starting with û = 0, the algorithm proceeds
as follows:

1. Threshold WTr to increment sparsity pattern of û

2. û := arg min ‖r − Wu‖2
2 subject to new sparsity pattern

3. r := r − Wû

4. Repeat until convergence or a fixed number of steps

Finally, the solution û is thresholded by θ. Each step involves one
correlation as in (2) and one small least-squares solution, each of
which cost O(kn). The number of steps is a constant independent
of t, so the total cost is O(kn). This represents a mere constant-
factor increase in complexity compared to detection by correlation.

3. EXPERIMENTAL RESULTS
Our test fingerprinting scheme is based on spread spectrum water-
marking [1]. The 512× 512 image Lena is transformed by a whole-
image DCT, and the 1000 AC coefficients largest in magnitude are
deemed to be the marking subspace. Independent pseudorandom
Gaussian values are added to these coefficients, each scaled accord-
ing to the magnitude of the respective coefficient, to create each
of 40000 fingerprinted authorized copies. Thus, the dimension and
number of fingerprints are k = 1000 and n = 40000.

The number of traitors T takes values 5, 10, 15, 20 and 25. Their
collusion attack consists of the combination of their copies in the
whole-image DCT domain in one of four ways, followed by JPEG
compression [17] at one of five qualities. The combination of DCT
coefficients is by either mean (linear average), median, maximum +
minimum − median (negative modified attack) or random sampling.
Scaled versions of the quantization matrix in Annex K of [17] vary
the compression quality, with scaling factor Q taking values 0.25,
0.5, 1, 2 and 4. Larger Q means more aggressive compression.

In the interest of running a large number of experiments, we
compare the traitor tracing robustness of only the three lowest com-
plexity detection algorithms: correlation, Homotopy and StOMP.
For the Homotopy and StOMP algorithms, we use the implemen-
tations of [15] and [16] with up to 50 and 10 steps, respectively. We
set the StOMP threshold to keep the probability of false detection
below 10−6 per step, assuming a Gaussian tail model. Each detec-
tion algorithm is run 500 times with different sets of pseudorandom
fingerprints and different combinations of traitors, for each setting of
number of traitors, method of collusion and quality of compression.

We plot a Receiver Operating Characteristic (ROC) curve for
each detection algorithm under each setting. The curve is obtained
by varying the final detection threshold θ, and plotting the probabil-
ity of at least one missed detection of a traitor (on the vertical axis)
against the probability of at least one false detection of a non-traitor
(on the horizontal axis).

Fig. 1 shows ROC curves for mean collusion for various num-
bers of traitors T and compression scaling factors Q. The curves in
the upper left depict the easiest scenarios: fewest traitors and gentlest
compression. Here, all three algorithms can reach zero probabilities
of missed detections and false detections with some θ. The curves
in the lower right show the most challenging scenarios. Here, the
algorithms can only reach the corner points, by declaring all users to
be traitors (θ = −∞) or none of them (θ = ∞), and the diagonal
by timesharing these two trivial strategies. In moderate settings, our
proposed detection algorithms outperform correlation. At T = 25
and Q = 0.5, Homotopy and StOMP perform ideally but correla-
tion performs trivially. The difference in other cases is less extreme,
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Fig. 1. ROC curves for mean collusion by traitors; showing probability of at least one missed detection vs. probability of at least one false
detection, for detection by correlation, Homotopy and StOMP, for various numbers of traitors T and compression scaling factors Q.

but will still be significant depending on the reliability requirements
of the application. Our proposed algorithms extend the boundary
of robustness for this spread spectrum fingerprinting scheme, with
complexity increased only by a constant factor for StOMP and by a
factor linear in the maximum number of traitors for Homotopy.

Fig. 2 shows similar ROC curves for median collusion. These
results are encouraging because detection by Homotopy and StOMP
both implicitly assume linearity. For mean and median collusion,
our proposed algorithms can reliably trace roughly twice as many
traitors as correlation can, at each compression quality.

Fig. 3 shows the ROC curves for negative modified (maximum
+ minimum − median) and random sampling collusion, respec-
tively. These attacks, being more severe than mean and median col-
lusion, reduce both the fidelity of the unauthorized copy and the ef-
fectiveness of traitor tracing. Ten or more traitors can not be reliably
identified by any of the detection algorithms. Yet in the nontrivial
settings with T = 5 traitors, StOMP performs roughly as well as cor-
relation, but Homotopy outperforms them both. This demonstrates
that, in some cases, it may be beneficial to forgo the complexity sav-
ings of StOMP for the nongreedy performance of Homotopy.

4. CONCLUSIONS

We have cast traitor tracing in multimedia fingerprinting as a sparse
underdetermined linear problem, and applied detection algorithms
based on sparse signal approximation. The greedy algorithm StOMP
has complexity greater than correlation by only a constant factor, and
the nongreedy algorithm Homotopy by only a factor linear in the
maximum number of traitors. We demonstrate that these algorithms
extend the robustness of a spread spectrum fingerprinting system in

a backwards-compatible way. Under mean or median collusion at-
tack followed by compression, roughly twice as many traitors can be
traced reliably. Future work includes the application of these detec-
tion algorithms to anti-collusion coded fingerprints.
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Fig. 2. ROC curves for median collusion by traitors; showing probability of at least one missed detection vs. probability of at least one false
detection, for detection by correlation, Homotopy and StOMP, for various numbers of traitors T and compression scaling factors Q.
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Fig. 3. ROC curves for (a) negative modified collusion, and (b) ran-
dom sampling collusion; showing probability of at least one missed
detection vs. probability of at least one false detection, for detec-
tion by correlation, Homotopy and StOMP, for various numbers of
traitors T and compression scaling factors Q.
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