
Segmentation of a Speech Spectrogram using Mathematical Morphology
Raphael Steinberg, Douglas O'Shaughnessy - Fellow 

INRS-Telecommunications 
800 de la Gauchetiere Ouest, 
Montreal, H5A 1K6, Canada 

ABSTRACT 

It has been shown that speech spectrograms can be read by trained 
experts. In this work, we regard the speech spectrogram image as a 
written text in some unknown language and perform segmentation 
in order to capture the energy associated with each formant. We 
propose an algorithm based on Mathematical Morphology 
operators and mainly on the watershed transform. The result is 
robust segmentation for wideband speech spectrograms that can be 
later used for automatic speech recognition. We show results of 
experimental runs for different phoneme classes. 

Index Terms— Speech recognition, Morphological operations, 
Image segmentation, Optical character recognition 

1. INTRODUCTION 

The sound spectrogram was invented in the 1940s to help break 
enemy codes and to help detect submarines. Speech spectrograms 
soon followed and have been used in the study of speech [1]. 
Previous attempts to recognize speech using the speech 
spectrogram as input have produced mixed results. Spectrogram 
reading involves recognition of phonemes, sub-phonemes and 
multiple-phonemes and requires from the reader hours of training 
and good knowledge and understanding of speech. 

Human experts can read speech spectrograms with a high 
level of accuracy. Spectrogram reading requires a combination of 
different sources of knowledge such as articulatory movement, 
phonotactics, linguistics and acoustic phonetics [2]. Prof. Victor 
Zue of MIT has spent over 2500 hours learning spectrogram 
reading and has reached impressive recognition rates. Zue and 
Cole [3] have given encouraging results for automatic speech 
recognition based on speech spectrograms. Different experiments 
demonstrate recognition rates in the range of 85%. Such 
encouraging recognition rates motivate the development of an 
automatic tool to perform the reading task. 

In an effort to mimic the human experts’ behavior we 
choose a large time interval on the order of 1 second in order to 
capture several phonemes that may be related through co-
articulation. Speech signals can be modeled as non-stationary 
signals. Movements of the vocal tract can be well represented 
using a wideband spectrogram. The wideband spectrogram is 
generated using a relatively short time window that gives good 
time resolution but less specified frequency resolution. 

Previous attempts to extract information from speech 
spectrograms have been made. We note here the work of [4] that 
used morphological skeletons to extract information. While in 
general it is possible to extract information through a skeleton-

based approach, we believe it is necessary to identify and segment 
the speech spectrogram into Binary Large Objects (BLOBs). The 
uncertainty principle, as demonstrated by the Heisenberg–Gabor 
inequality, stipulates that the extent to which a particular frequency 
can be localized is inversely proportional to the length of the time 
interval chosen. Attempting to track down frequency changes with 
time using a single pixel skeleton path is futile when the time 
interval is too short to allow single pixel localization.  

In [5], an expert system based on spectrogram reading 
knowledge was devised with an objective to segment speech into 
different phonemes. It deals with voiced/unvoiced fricatives, 
voiced/unvoiced stops, nasals and liquids. A rule-based expert 
system reports recognition rates of about 90% for the 
aforementioned phoneme classes. These results motivate us to 
focus on the classes that are more difficult to recognize by a rule-
based segmentation, namely the vowels and glides. 

2. TIME FREQUENCY REPRESENTATION 

Time-Frequency Representation (TFR) differs from a spectrogram 
representation by calculating either the spectral power or spectral 
energy of the signal instead of its spectral absolute value logarithm. 
Nadine Martin examined various algorithms for TFR segmentation 
[6, 7]. In [6] two algorithms for TFR segmentation were suggested. 
The first is based on morphological filters and the watershed 
transform and the second is based on tracking using a Kalman 
filter. Another interesting segmentation scheme based on statistical 
features of a spectrogram is presented in [7]. Since the signal 
characteristic and origin are assumed unknown throughout the 
algorithm the segmentation is blind toward the analyzed signal. 
Tuning is not required. Assuming in both cases [6, 7] a 
deterministic signal corrupted by additive Gaussian noise, a 
probability model is developed to allow for local segmentation of 
objects.

Wideband speech spectrograms are indeed noisy images. 
Vertical lines that striate the spectrogram show that it may be 
inappropriate to model the noise as a log-normal distribution as 
would be the case if we apply the algorithms developed in [6, 7] 
for TFR to the spectrogram. The vertical striating lines are caused 
by the opening and closure of the vocal cords. These lines appear 
in a spaced distance that can be used as a rough approximation to 
the fundamental frequency f0, also known as the pitch. Another 
caveat for using a blind method as proposed in [6, 7] is the 
difficulty in adjusting it to recognize specific types of information 
present in the speech spectrogram. It is possible to calculate the 
fundamental frequency and filter-out the vertical lines by either 
tracking them on the image spectrogram or by filtering the original 
signal. For example, the pitch can be calculated from the cepstral 
coefficients [8] that can be easily extracted from the image 
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spectrogram. However the morphological tools and filtering that 
are used in the proposed algorithm perform this task indirectly. 
Using median smoothing and a local threshold helps in reducing 
the fundamental frequency vertical striating lines. Due to the 
windowing effect, energy from different formants is smeared in 
wide frequency bands. In the following we demonstrate the 
importance of selecting a suitable window. 

3. WINDOW SELECTION 

A common tradeoff in window selection is the main lobe width 
versus side lobe roll-off rate. A Hann window is used often due to 
its good roll-off properties: 60 dB/decade. The Hamming window 
has a lower roll-off of 20 dB/decade but a lower main lobe width 
since its maximum side lobe level is -43 dB as apposed to -32 dB 
for the Hann window [9]. Choosing a narrow main lobe reduces 
the uncertainty in frequency and allows us to better distinguish 
between formants that have a small frequency difference. The 
lower roll-off introduces dependencies on previous and future 
speech samples resulting in a noisier image. However, the 
watershed transform can produce better results since it can better 
capture low energy regions in particular on rising and falling 
formants as seen by comparing fig. 1(c) and fig. 1(d). Therefore we 
choose to work with a hamming window for the specified short 
time interval of 6.5 ms. 

4. SPEECH SPECTRORAMS 

A speech signal sampled at 16 kHz is transformed using a 1024 
point Fast Fourier Transform (FFT). The FFT is windowed using a 
6.5 ms Hamming window with 50% overlap. The logarithm of the 
absolute value of the FFT is then taken. Finally, histogram 
equalization is performed on rectangular tiles. The rectangular tiles 
are then tapered using the bilinear transform. A Gamma transform 
with an exponent value of 0.8 is applied to enhance image 
brightness. The Gamma correction value can differ depending on 
the hardware (monitor/printer) used.  

The tiled histogram equalization operates on rectangular 
regions and generates more homogeneous energy values for the 
different formants. This method of equalization differs from the 
pre-emphasis filter, since it is performed on a rectangular tile and 
not on particular vertical lines/time instances. The result is an 
image spectrogram that clearly shows the first four speech 
formants, f1 to f4.

5. MATHEMATICAL MORPHOLOGY 

Mathematical Morphology (MM) enables mathematical 
characterization of geometrical shapes based on lattice theory and 
topology. It was invented by Jean Serra and Georges Matheron in 
1964 [10]. The basic building blocks of MM are Dilation 
(Minkowski addition) and its dual, Erosion [11]. Using these two 
dual operators, more complex operators can be constructed such as 
opening, closing, skeleton, Skeleton by Influence Zones (SKIZ),
thinning, thickening, Hit-Or-Miss, watershed transform and more 
[12]. MM was originally used for binary images and later extended 
to gray scale images. 

Our goal is to extract from the Speech Spectrogram the 
first four formants of each phoneme. The speech spectrogram gives 
us the energy concentration blurred due to the windowing effect. 
After binarization each formant will appear as a numbered BLOB.  

6. WATERSHED TRANSFORM 

The Watershed Transform (WT) is a morphological-based image 
processing segmentation algorithm. First proposed by Digabel and 
Lantuéjoul [13] and later extended to gray scale images by 
Beucher and Lantuéjoul [14] the watershed transform has been 
studied from theoretical, practical and algorithmic points of view. 
Currently, thanks to the work of Soille and Vincent [15] an 
efficient fast algorithm for computing watersheds exists and 
enables practical implementation of segmentation tasks. 

A watershed can be classified as a region-based 
segmentation approach; it takes its reasoning from a natural 
phenomena occurring in geography: consider the image to 
represent a 3D topographical surface. Multiple local minima terrain 
points are flooded with water. At points where water from different 
basins meets, dams are built. The water is confined within 
catchment basins and the dams which are called watershed lines or 
simply watersheds, are the separators between different segmented 
pieces. When the water reaches the highest point in the landscape, 
the process is stopped resulting in a labeled and segmented image. 
Before running the watershed transform a gradient of the image is 
calculated. Normally, a morphological gradient also known as 
Beucher gradient is used. The Beucher gradient is defined as: 
g(f)=(f B)-(f B), (1) 
where is a morphological dilation and is the morphological 
erosion, both using the same structuring element. Since the SKIZ 
consists of all points which are equidistant (in a geodesic sense) to 
at least two nearest connected components, we have in the 
continuous case an identity between the watersheds and the SKIZ 
[16]. A good example of different uses of the WT can be found in 
[17]. 

7. LOCAL VS. GLOBAL THRESHOLD 

We would like to obtain a binary image from the grayscale image 
spectrogram. In order to obtain a binary image we need to perform 
some sort of quantization. The naïve approach to quantization is 
selecting a global threshold level for the entire image spectrogram. 
Since lower formants tend to have higher energy concentration 
than higher formants and since the spectrogram image contains 
much detailed information regarding different formants, simply 
using a global threshold will not yield good results. A local 
threshold is used to isolate each BLOB from its surrounding. A 
global threshold is used to clean the image from noise. Combining 
the locally threshold image with the globally threshold image using 
a logical OR will yield the desired result. 

8. ALGORITHM DESCRIPTION 

1. Median filter is used once on a 3 by 20 rectangular and 4 times 
using a 20 pixel horizontal line. 
2. Run a 2D Gaussian window (Gabor filter). 
3. Smooth using a 2D Wiener filter. The local mean and variance 
are estimated in a 16 by 16 square around each filtered pixel. 
4. Apply local threshold on (3). 
5. Apply global threshold on (3). 
6. Combine the results of (4) and (5) using a logical OR. 
7. Dilate with a disk as a structuring element in order to disconnect 
thin lines and eliminate small areas in the image. 
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8. Use morphological connectivity to disregard small sections that 
contain less than 40 pixels or that have a maximum width that is 
less than 20 pixels.  
9. Perform an 8-connectivity watershed algorithm. 

Figure 1: Algorithm flow chart 

We obtain a segmented and labeled image. Two notable 
algorithmic improvements to [18] are the combination of a local 
and global threshold that allows the utilization of a threshold and 
the use of morphological image processing to tackle the 
segmentation problem. Therefore we are not limited to segmenting 
vowels as in [18] and we obtain robust results even when formants 
are near one another. 

9. RESULTS 

The algorithm was tested on different speech samples from the 
TIMIT database. Results were robust, the segmentation performed 
well on different speakers and different sentences. The TIMIT 
database contains female and male speakers from 7 different 
dialect regions in the United States. The speakers repeated 
sentences specially designed at SRI, MIT and TI to exemplify 
different speech characteristics such as accent, co-articulation and 
different combinations of phonemes. Orthographic transcription 
and time-aligned phonetic transcription are included for every 
sentence. 

Our first example uses the meaningful sentence 
“However, the litter remained, augmented by several dozen
lunchroom suppers”; bold face fonts indicate 1 second of speech 
that in this example is displayed in fig. 1(a). We obtain good 
segmentation for the first and second formants for all voiced 
phonemes. For the third and fourth formant, the segmentation 
misses part of the phoneme /r/ but the general direction is 
preserved. In this example, all four formants are well aligned and 
ready to be recognized by an appropriate system. 

Our second example presents a more challenging 
scheme. We examine a different section of the same sentence: 
“However, the litter remained, augmented by several dozen 
lunchroom suppers.” As seen in fig. 1(b), the algorithm has 
difficulty in segmenting the second and third formant of /r/. Since 
these formants are very close together it is hard to distinguish 
between them and to segment them as different objects. In 
addition, high energy levels for f3 make it more difficult to separate 
it from f2. Another difficulty arises in the identification of the nasal 
/m/. The low spectral density makes it hard to segment the 
phoneme correctly. The low spectral density is caused by a spectral 
zero that reduces the second formant. One other problem is small 
segments that do not represent a formant but still appear in the 
image (false positives). This problem can be solved by changing 
the constant in step #8 of the algorithm. However, changing the 
constant to accept only stronger energies would result in losing 
some real formants. In general, the algorithm manages to perform 
well when the formant energies are strong. 

Image Spectrogram 

Median 3 by 20, Set cnt = 1 

Median 1 by 20 
cnt = cnt + 1 

As a last example, we choose: “Don’t ask me to carry an 
oily rag like that.” As seen in fig. 1(c), we obtain several cases in 
which formants are segmented into more than one BLOB. Even 
though over-segmentation was tackled in the watershed algorithm 
we still have remainders in the form of small binary objects that 
can cause problems in the recognition stage. On the other hand as 
was also noticed in the previous examples, BLOBs associated with 
f1 sometimes relate to more than one phoneme. This phenomenon 
occurs in some cases for the higher formants as well. 

In order to check the algorithm behavior in a more 
systematic fashion we test the results on multiple runs. The criteria 
for which we judge the performance is the fuzzy variable ‘Grade’ 
that takes the values {‘Perfect’, ‘Good’, ‘Average’, ‘Below 
Average’, ‘Poor’} for the segmentation results. We assign numbers 
to each descriptor where ‘Perfect’ takes the highest value of 5, 
‘Poor’ takes the lowest value of 1 and it is believed that ‘Average’ 
which takes the value of 3 contains enough information for 
automatic recognition. We select 10 phonemes and run 20 different 
tests for each phoneme, in total 200 different speech segments. The 
results including the mean and variance of the visual measurements 
are presented in Table 1.  

After examining the algorithm we see that in general the 
algorithm obtains good segmentation results for the formant energy 
levels throughout different phonemes. The algorithm obtains better 
segmentation results when the phoneme duration is longer. Since 
more information is available and since our segmentation 
algorithm is searching for large objects we tend to miss small 
concentrations of energy. In general, the vowels are well-
recognized. The nasal /m/ and the glide /l/ have lower 
segmentation results due to the difficulty of tracking diagonal lines 
in the spectrogram. It is possible to extend the algorithm to detect 
diagonal lines either by adding tracking procedure such as a 
Kalman filter or by a diagonal line emphasizing median filter. The 
semivowel /w/ is better segmented on short duration phonemes 
since there is a higher energy concentration that enables better 
segmenting of f3 and f4.

10. CONCLUSION 

A robust algorithm for speech spectrogram segmentation was 
presented. By using morphological image processing techniques, 
we are able to obtain reliable segmentation of formants in most 
cases. The algorithm performs well for all voiced phonemes and 
has better segmentation results than the algorithms described in the 

Is cnt = 4?
No

Yes 

Local 2D Wiener Filter Local Threshold

Global Threshold Logical 
OR 

Dilation 
(disk as structuring element) 

Discard Small 
Connected Sections 

Watershed Transform 

Binary Mask
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introduction; however, difficulties occur when formant frequencies 
are close together or when there is a low-energy formant that is 
rapidly going up or down in frequency. Some suggestions such as 
changing the threshold level were made to improve or tune the 
algorithm. These results can be used as input to an automatic 
speech recognition system or in other general uses of speech 
spectrograms. It is in the authors’ belief that a spectrogram-based 
speech recognition system can complement an existing recognition 
system by incorporating human expert knowledge into the 
recognition task. 

11. FUTURE WORK 

We intend to create a feature vector from the BLOBs that can later 
be used by an Expert System. It seems that a system based on a 
combination of Fuzzy Logic with an adaptive neural network can 
give good results while avoiding the problems encountered in [4]. 
We intend to construct membership functions that would contain 
the rules needed to read a spectrogram and to train the system to 
perform speech recognition automatically.  
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Test # Phoneme 
aa ae Eh ux ow oy r l m w

1 5 5 5 5 5 5 5 3 5 1
2 5 5 4 4 4 4 3 4 5 2
3 2 3 3 2 2 3 3 1 4 5
4 4 5 2 5 4 5 5 5 3 3
5 5 4 5 5 5 3 5 5 2 4
6 2 5 5 5 3 5 5 2 5 5
7 5 4 4 5 5 4 3 5 1 5
8 4 5 5 5 5 3 3 1 2 2
9 5 4 2 2 4 4 4 1 1 3
10 3 3 5 5 5 5 5 1 4 3
11 5 4 1 5 5 4 4 2 1 3
12 5 5 3 4 3 4 5 1 1 4
13 5 4 5 5 4 3 5 5 3 5
14 5 4 4 3 2 3 3 3 1 2
15 2 2 5 3 3 3 4 5 2 2
16 5 4 5 4 5 2 5 5 2 5
17 4 3 5 5 5 3 5 2 1 2
18 2 5 5 5 3 5 4 5 2 2
19 4 5 5 5 5 5 4 5 3 5
20 5 5 5 5 4 4 4 3 5 5

Mean 4.1 4.2 4.15 4.35 4.05 3.85 4.2 3.2 2.65 3.4 
Variance 1.46 0.8 1.61 1.08 1.10 0.87 0.69 2.91 2.34 1.94

Table 1: Results of a visual inspection. The grades describe the 
accuracy of the segmentation algorithm for each phoneme. 

(a) (b)

(c) (d)

Scale: Horizontal axis: 0-1 sec, Vertical axis: 0-4 kHz 

Figure 2: Image Spectrograms before (left) and after 
segmentation.(a) “several dozen”. (b) “the litter remained”. (c) “an 
oily rag” using a Hamming Window. (d) “an oily rag” using a 
Hann Window. 
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