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ABSTRACT

We propose a co-training algorithm to detect the singing voice 
segments from the pop songs. Co-training algorithm leverages 
compatible and partially uncorrelated information across different 
features to effectively boost the model from unlabeled data. We 
adopt this technique to take advantage of abundant unlabeled 
songs and explore the use of different acoustic features including 
vibrato, harmonic, attack-decay and MFCC (Mel Frequency 
Cepstral Coefficients). The proposed algorithm substantially 
reduces the amount of manual labeling work and computational 
cost. The experiments are conducted on the database of 94 pop 
solo songs. We achieve an average error rate of 17% in segment 
level singing voice detection.

Index Terms— Co-training algorithm, Singing voice 
detection, Hidden Markov Model, Timbre.

1. INTRODUCTION

Detection of singing voice is needed in applications such as singer 
identification, singing voice separation, music information 
retrieval, music transcription and summarization. In Karaoke 
applications, singing voice segments have to be detected to carry 
out lyric alignment. One of the most important characteristics of 
music is the presence of singing voice [1]. We define vocal as 
singing voice with or without instrumental accompaniment. Pure 
instrumental music, or nonvocal, refers to the segments that only 
have music without singing. In singing voice modeling, we train 
vocal and nonvocal models from labeled song database. In singing 
voice detection, a common approach is in two steps: 1) extracting 
features from the song, 2) labeling the segments into vocal and 
nonvocal classes.
     The unlabeled songs are easier to obtain than the labeled ones. 
In this paper, we propose a novel co-training algorithm for training 
a vocal/nonvocal classifier. The algorithm starts with a small set of 
labeled songs to bootstrap the model; it uses knowledge learnt 
from one feature to probabilistically label a database. The resulting 
labels are in turn used to train classifier based on another features. 
This repeats across different features extracted from the same 
database. In this way, we leverage the compatible (features giving 
consistent prediction for labeling) and partially uncorrelated
(features providing different views to the labeling problem) 
information across different features to effectively boost the model 
from unlabeled data. 

Blum and Mitchell [2] introduces the co-training algorithm on 
web page classification consisting of two redundantly sufficient 
sets of features are trained separately using a small set of labeled 
web pages on each view. Each algorithm’s prediction on new 
unlabeled web pages are used to augment the training set for the 
other feature. The learning scheme of co-training is Naive Bayes. 
As stated by Chan, Koprinska and Poon [3], the performance of 
co-training also depends on the learning algorithm it uses. They 
use Support Vector Machines that outperforms Naive Bayes on 
email classification. Muller, Rapp and Strube [4] employ decision 
tree classifier for co-training approach with independent features 
using the small sets of training labeled German texts in a loop to 
label the unlabeled German texts. Lee, Kan and Lai [5] employed 
co-training with PARCELS classifier that uses based on separate 
stylistic and lexical views of the web block.  Their co-training 
process results outperform single-view result. There are 
redundantly sufficient features to extract from data so that an email 
having only one set of features or another can be classified [15]. In 
summary, the co-training algorithm works when an initial 
classifier of reasonable performance and the redundantly sufficient 
features are available.  In this paper, we employ co-training 
algorithm using HMM (hidden Markov model) [9] classifier. The 
system co-trained on three features outperforms that using single 
feature.

The rest of this paper is organized as follows. We study 
perceptually motivated acoustic features and their characteristics in 
section 2. In section 3, Detail of the co-training algorithm and 
HMM classifier, in section 4, describe the pop song database, 
experiment setup and results. Finally, we conclude our study in 
section 5. 

                                                                                                   
2. ACOUSTIC FEATURES 

Several perceptually motivated features, namely harmonic, vibrato 
and timber features, characterize song segments.   We use subband 
filters on octave frequency scale in formulating these acoustic 
perceptual features.  

2.1. Vibrato 

Vibrato is a useful cue for vocal/nonvocal discrimination [7]. It is a 
periodic, rather sinusoidal, modulation of pitch and timbre of a 
musical tone [8]. The style of the individual singer can develop a 
vocal vibrato function [9]. 

Not all instruments such as percussion instruments can produce 
vibrato because some have fixed pitches which cannot be varied by 
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sufficiently small degrees [10]. The contemporary flutist use 
vibrato lavishly. However, the tone most recommended for 
eighteen and early nineteen century flutist was probably produced 
without vibrato [17]. String player for instance guitarist choose to 
vary pitch from below, only up to the nominal note and not above 
it. The performers or singers regard vibrato as an ornament. And, 
the style of the vibrato is decided by themselves [9]. 

Three different types of vibrato are shown in Figure 1. Vibrato
is characterized by two parameters: the extent and the rate. The
vibrato extent describes how far the frequency of partial 
fluctuates left or right from a note within a vibrato cycle. 
The vibrato rate specifies the number of fluctuations per 
second. Although vibrato excursions to the left and right are not 
balanced at Type-A and Type-B, vibrato excursions to the up and 
down from the note are balanced at Type-C. Type-C vibrato has 
narrower pitch fluctuation and faster rate. 

0 200 400 600 800 1000
-20

0

20

0 200 400 600 800 1000
-20

0

20

0 200 400 600 800 1000
-20

0

20

Singer-A 

Singer-B 

Singer-C 

Time(ms)

(a) 

(b) 

(c) D
ev

ia
tio

n 
fro

m
 n

ot
e 

(H
z)

 

Period, Rate=1/Period 
Extent 

Type-A

Type-B

Type-C

0 200 400 600 800 1000
-20

0

20

0 200 400 600 800 1000
-20

0

20

0 200 400 600 800 1000
-20

0

20

Singer-A 

Singer-B 

Singer-C 

Time(ms)

(a) 

(b) 

(c) D
ev

ia
tio

n 
fro

m
 n

ot
e 

(H
z)

 

Period, Rate=1/Period 
Extent 

Type-A

Type-B

Type-C

Figure 1. Three  types of  vibrato waveforms observed at 
the note of D6, 1174.6Hz being normalized to 0 at Y-axis 

Vibrato filter has two cascaded layers of subband as demonstrated 
in Figure 2. The first layer consists of the overlapped 96 
trapezoidal bandpass filters which are tapered between 

semitone and  semitone. The singing voice contains 
high frequency harmonics [11], so our subband filters span up to 8 
octaves (16 kHz). The tapered and overlapped trapezoidal filters 
allow vibrato fluctuations of adjacent notes. The second layer has 
5 non-overlapped rectangular filters of equal bandwidth for each 
trapezoidal subband [9].   
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Figure 2. A bank of two cascaded subband filters  

In Figure 3, the upper panel illustrates the spectrum partial. The 
middle panel shows the frequency response of the vibrato filter and 
the lower panel demonstrates the instantaneous amplitude output 
of the vibrato filter which can track the local maxima to derive the 
vibrato extent [9]. The different types of vibrato undulations are 
captured by the vibrato filters. 
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Figure 3. Vibrato fluctuations and vibrato filtering observed at 
the note G#5, 830.6Hz. (a) Vibrato fluctuates left (b) no 

fluctuation (c) Vibrato fluctuates right. 

2.2. Harmonic 

Rocamore [12] mentioned that the harmonic of the singing voice is 
high because the partials of the singing voice are located at 
multiples of the fundamental frequency and some of them are 
overlapped with the harmonic of the musical instrument from the 
accompaniment. The start of the singing voice makes a rapid 
increase in the energy level of the music signal [11]. To capture 
the difference of the harmonic spectral intensity between vocal and 
nonvocal segments, we implement the bandwidths of the harmonic 
filters with 5.0 semitone from each note and the filters span up 
to 16 kHz as shown in the middle panel of Figure 4. In Figure 4, 
the upper panel illustrates the harmonic spectrum of the vocal and 
nonvocal signals and the lower panel demonstrates the output of 
the harmonic filters. 
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Figure 4. Harmonics and harmonic filtering. 

2.3. Timbre 

For sounds that have the same pitch and loudness, timbre or sound 
quality is a general term for the distinguishable characteristics of a 
tone. Timbre is mainly determined by the harmonic content of a 
sound and the dynamic characteristics of the sound such as vibrato 
and attack-decay envelope of the sound [6]. The onset is very short 
about 6 ms for vowels independent of vowel colour. Musical 
instrument has longer onset time ranging from 20ms to 300ms. 
This is one of the factors that support singing voice to stand out of 
the musical accompaniments [13]. Attack-decay processes of vocal 
and nonvocal signals are shown in Figure 5 (a) and (b) respectively. 

 Figure 5 (a) demonstrates that the vocal signal arises a sudden 
attack to achieve its peak amplitude and the decay process is more 
gradual than the decay process of the nonvocal shown in Figure 5 
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(b). The nonvocal signal takes more time than the vocal signal to 
develop to its peak. 

1211.51110.5105.554.543.5
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(a) Vocal signal  (b) Nonvocal signal  
Figure 5. Attack-decay envelopes. 

2.4. Cepstral Coefficient Computation 

A music signal is divided into frames of 20 ms with 13ms 
overlapping. Hamming window is applied to each frame to 
minimize signal discontinuities at the end of each frame and each 
audio frame is passed through vibrato filters. A total of 13 Octave 
Frequency Cepstral Coefficients (OFCCvib) is computed from the 
log energies employing Discrete Cosine Transform. The feature 
coefficients with delta parameters from two neighboring frames 
are augmented to detain temporal information because delta 
parameters take care of vibrato rate and the attack-decay envelop 
in OFCChar and MFCC. 

We replace the vibrato filters with the harmonic filters to 
calculate 13 Octave Frequency Cepstral Coefficients (OFCChar)
and MFCC filters [14] to compute 13 Mel Frequency Cepstral 
Coefficients (MFCC).

3. CO-TRAINING ALGORITHM 

Suppose that we are able to extract two compatible and partially
uncorrelated features F1 and F2 from a database. We now 
formulate the co-training algorithm as follows: 

Given:
F1 and F2 are redundantly sufficient sets of features 
L is a set of labeled training segments 
U is a set of unlabeled segments 

Loop:
Learn the classifier C1 from L based on F1
Learn the classifier C2 from L based on F2
Allow C1 and C2 to label the data in U 
Choose the labeled in U and add to L 

In this paper, we propose the co-training algorithm for hidden 
Markov model (HMM) classifier with three features. First, we 
utilize the harmonic content and the dynamic characteristics of the 
sound such as vibrato and attack-decay to characterize the timbre 
feature effect. Then, we use MFCC feature to improve 
performance. Studies have shown [9] that the features are all 
effective in vocal/nonvocal detection. Intuitively, we expect that 
the vibrato, harmonic and MFCC spectral features have compatible
views as far as vocal/nonvocal classification is concerned. 
However, it is arguable that the three views are uncorrelated.
Studies [16] have also shown that the views do not have to be 
entirely uncorrelated for co-training to take effect. This motivates 
our attempt to explore multi-view co-training for vocal/nonvocal 
classifier. 

The co-training is performed using three features from both 
annotated label training song segments and automatically labeled 

song segments as shown in Figure 6. Only the automatically 
labeled song segments are used for co-training.

In Figure 6, the first feature starts employing vibrato feature to 
extract the training labeled segments and unlabeled test songs.  
The HMM classifier learns and labels the unlabeled test songs. The 
automatically labeled song segments are added to the training 
labeled song segments to augment the training database as shown 
in the dotted line in Figure 6. We repeat the same process for 
harmonic feature and MFCC feature.  We obtain the final 
vocal/nonvocal segments from the labeling using MFCC feature. 
We also implement a variation of the proposed co-training by 
removing the dotted lines. In other words, the second co-training 
approach starts with a small labeled database and continues the co-
training only using automatically labeled data. The co-training can 
run in multiple iterations. 
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Figure 6. A co-training algorithm leveraging vibrato, harmonic 
and MFCC features in the training process 

4. EXPERIMENTS AND DISCUSSION 

We study the effect of the co-training algorithm on the vocal 
detection system. We created a database of 94 popular pop solo 
songs consisting of English and Chinese songs. This song database 
is split into training database (TrainDB) containing 49 songs from 
7 singers and test database including 45 songs from 14 singers 
(TestDB). The songs and the singers in TrainDB and TestDB are 
not overlapped. Every song is annotated manually to provide the 
ground truth labeled and each annotated vocal or nonvocal 
segment lengths range from 0.8 seconds to 12 seconds. The 
training songs are manually divided by vocal/nonvocal song 
segments and these vocal song segments are labeled by gender and 
tempo (High tempo, Medium Tempo and Low Tempo). Seven 
typed of labels are nonvocal, vocal male high tempo, vocal male 
medium tempo, vocal male low tempo, vocal female high tempo, 
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vocal female medium tempo and vocal female low tempo. Window 
size is 20ms and frame shift is 7ms in all tests. 

We train the continuous density HMM with four states and two 
Gaussian mixtures per state for all HMM models [9] using the 
labeled vocal/nonvocal song segments. Seven HMM models are 
trained using the TrainDB. We calculate approximately the 
likelihood score of the training song segments being generated by 
each of the 7 models. During testing, the test song is divided into 
1s segments to extract the features and made the vocal/nonvocal 
detection decision. Each 1s segment is calculated with all the 7 
models in the classifier and the model with the highest likelihood 
suggests the best match. 

We conduct several singing voice detection experiments. We 
first conduct experiments using single feature such as MFCC, 
OFCCvib (Vibrato), OFCChar (Harmonic) and timbre feature which 
is determined by the combination of the harmonic content, vibrato 
and attack-decay (TBCC). We then conduct co-training 
experiments using automatically labeled data only (AL) and using 
automatically labeled data plus labeled data (ALL). Different 
combinations of features are also tried out in the experiments, such 
as, Vibrato + Harmonics and Vibrato + Harmonics + MFCC as 
shown in Table 1.
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MFCC 20.36
OFCCvib 19.1
OFCChar 19.04
TBCC 21.36
CoALvib,har 17.99
CoALvib,har,MFCC 18.1
CoALLvib,har 17.94
CoALLvib,har,MFCC 17.05

Table 1. Error rate (ER%) of singing voice detection on 
TestDB.

We report the results in Table 1 to illustrate combinations of 
different settings in the experiments. CoALLvib,har,MFCC, with an 
average error rate of 17.05%, outperforms all the other 
experiment setups.  It is observed that CoALLvib,har,MFCC capture
singing voice detection well by 5.8%, 20%, 10.5% and  10.7% 
relative error reduction over  CoALvib,har,MFCC, TBCC, OFCChar
and OFCCvib. Experiments with co-training give better results 
than the single feature training method. Although CoALLvib,har
and CoALvib,har,MFCC take up more computations, they achieve 
clearly better results. 

5. CONCLUSION 

We have presented the co-training algorithm employing 
several features such as vibrato, harmonic, timbre and MFCC. 
We conducted experiment with different features and performed 
the co-training in two different settings. The first one combines 
the annotated labeled segments with automatically labeled 

segments in the co-training (with the dotted lines in Figure 6 
taking effects); the second one only uses automatically labeled 
segments in the co-training. The results show that co-training 
algorithm is an effective tool that leverages different acoustic 
features from different views, that reduces the labeling work and 
improving the classifier performance. 

6. REFERENCES
[1] G. Tzanetakis, “Song-specific Bootstrapping of Singing Voice 
Structure,” IEEE International Conference Multimedia and Expo,
vol. 3, pp. 2027-2030, 27-30, June,2004. 
[2] A. Blum, and T. Mitchell, “Combining Labeled and Unlabeled 
Data with Co-Training,” IEEE International Conference Data 
Mining, pp. 597-598, USA, 2001. 
[3] J. Chan, I. Koprinska, and J. Poon, “Co-Training with a Single 
Natural Feature Set Applied to Email Classification,” ACM
International Conference Web Intelligence, pp. 586-589, 20-24, 
September, 2004. 
 [4] C. Muller, S. Rapp, and M. Strube, “Applying Co-Training to 
Reference Resolution,” 40th Annual Meeting of the Association for 
Computational Linguistics, pp. 352-359, Philadelphia, July, 2002. 
[5] C.H. Lee, M.Y. Kan, and S. Lai, “Stylistic and Lexical Co-
training for Web Block Classification,” ACM International 
Conference Web Information and Data Management, pp. 136-143, 
Washington DC, USA, 2004. 
[6] F. Winckell, Music, Sound and Sensation, Dover, NY, 1967. 
[7] H. Fujihara, T. Kitahara, M. Goto, K. Komatani, T. Ogata and 
H.G. Okuno, “F0 Estimation Method for Singing Voice in 
Polyphonic Audio Signal Based on Statistical Vocal Model and 
Viterbi Search,” IEEE International Conference on  Acoustics, 
Speech and Signal Processing, vol. 5, pp. V-253-V-256, Toulouse, 
14-19, May, 2006. 
[8] R. Timmers, , and P. Desain, Vibrato: Questions and answers 
from musicians and science. International Conference of Music 
Perception and Cognition, England, 2000. 
[9] T. L. Nwe, and H. Li, “Exploring Vibrato-Motivated Acoustic 
Features for Singer Identification,” IEEE Transactions on Audio, 
Speech and Language Processing, vol. 150, pp. 519-530, February, 
2007.
[10] “Vibrato”, Word of the Day. Answers Corporation, 2006. 
Ansers.com, 13 Dec. 2006.
http://www.answers.com/topic/vibrato
[11] T. Zhang, “System and Method For Automatic Singer 
Identification,” IEEE International Conference Multimedia and 
Expo, Baltimore, MD, 6-9, July, 2003. 
[12] M. Rocamora, and P. Herrera, “Comparing Audio Descriptors 
for Singing Voice Detection in Music Audio Files,” Brazilian
Symposium on Computer Music, San Pablo, Brazil, September, 
2007.
[13] W. Hackhaus, Die Ausgleichsvorgange. Zeitschrift fur 
Technische Physik, 1932. 
[14] C. Becchetti, and L.P. Ricotti, Speech Recognition Theory and 
C++ Implementation, John Wiley & Sons, New York, 1998. 
[15] S. Kiritchenko, and S. Matwin, “Email Classification with Co-
Training,” 2001 Conference of the Centre for Advanced Studies on 
Collaborative Research, Toronto, Canada, 2001. 
[16] I. Muslea, S. Minton and C. A. Knoblock. “Active + Semi-
supervised learning = Robust Multi-View Learning,” 2002, Proc. 
of the 9th Conference on Machine Learning, pp. 435-442. 
[17] M. Robinson and V. Parrish, “Flute Vibrato,” The Standing 
Stones. http://www.standingstones.com/flutevib.html

1632


