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ABSTRACT

This paper presents new lter bank design methods for sub-
band adaptive beamforming. In this work, we design analysis and
synthesis prototypes for modulated lter banks so as to minimize
each aliasing term individually. We then drive the total response
error to null by constraining these prototypes to be Nyquist(M )
lters. Thereafter those modulated lter banks are applied to a
speech separation system which extracts a target speech signal. In
our system, speech signals are rst transformed into the subband
domain with our lter banks, and the subband components are then
processed with a beamforming algorithm. Following beamforming,
post- ltering and binary masking are further performed to remove
residual noises.

We show that our lter banks can suppress the residual aliasing
distortion more than conventional ones. Furthermore, we demon-
strate the effectiveness of our design techniques through a set of au-
tomatic speech recognition experiments on the multi-channel speech
data from the PASCAL Speech Separation Challenge. The exper-
imental results prove that our beamforming system with the pro-
posed lter banks achieves the best recognition performance, a 39.6
% word error rate (WER), with half the amount of computation of
that of the conventional lter banks while the perfect reconstruction
lter banks provided a 44.4 % WER.

Index Terms— lter bank design, subband processing, beam-
forming, speech recognition

1. INTRODUCTION

There has been great interest in subband adaptive processing appli-
cations. Subband adaptive ltering can reduce the computational
complexity associated with time domain adaptive lters and improve
the convergence property in estimating lter coef cients [1]. How-
ever, the lter bank design for adaptive ltering poses problems not
encountered in more traditional applications such as speech coding.
In [2], de Haan et al. noted that perfect reconstruction (PR) lter
banks were not suitable for beamforming applications because PR is
achieved through alias cancellation [3, §5], which can reconstruct an
input signal correctly only if the outputs of the individual subbands
are not subject to arbitrary magnitude scaling and phase shifts. They
also proposed a method to design analysis and synthesis prototypes
for modulated lter banks so as to minimize the weighted combina-
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tion of the response error and aliasing distortion. The lter banks
proposed in [2] are referred as de Haan lter banks here.

In this work, we drive the response error de ned in [2] to null by
constraining the analysis and synthesis prototypes to be Nyquist(M )
lters [3, §4.6.1]. Thereafter, the minimization of the aliasing dis-
tortions is shown to reduce to the solution of an eigenvalue problem
in the case of the analysis prototype, and to the solution of a set
of linear equations in the case of the synthesis prototype. We also
discuss the performance limitation of our lter banks due to numer-
ical problems caused by singular matrices, and propose an alternate
solution for the special case which can eliminate not only the to-
tal response error but also residual aliasing distortion completely.
The lter banks proposed here are applied to minimum mutual in-
formation (MMI) beamforming where the active weight vectors are
estimated so that mutual information of two beamforming outputs is
minimized [4]. After that, the separated speech is further processed
with Zelinski post- ltering and binary masking [5] in order to re-
move diffuse noises and a residual interference signal.

We show the effectiveness of our methods through speech recog-
nition experiments on the far- eld speech data from the PASCAL
Speech Separation Challenge. The data were recorded in a reverber-
ant room, not arti cially convoluted with measured room impulse
responses and the position of speaker’s head varies as well as speak-
ing volume.

The balance of this work is organized as follows. In Section 2,
we review the de nition of a modulated lter bank. Section 3 con-
siders the design of suitable analysis and synthesis prototypes for
the modulated lter banks. In particular, Sections 3.1 and 3.2 brie y
present the design methods of [2] for prototypes, and then show how
slight modi cations of those techniques can produce prototypes with
zero response error and minimal aliasing distortions. In Section 4,
we rst compare the residual aliasing distortion of our method with
de Haan lter banks. We then describe the con gurations for speech
recognition experiments and compare our design technique with that
originally proposed in [2] as well as the popular paraunitary PR de-
sign. Finally, in Section 5 we present our conclusions and plans for
future work.

2. MODULATED FILTER BANKS

Figure 1 shows a schematic of a modulated lter bank withM sub-
bands and a decimation factor of D.

Following [2], we de ne the impulse responses h[n] and g[n]
for analysis and synthesis prototypes respectively, and express those
modulated versions according to

hm[n] = h[n] W−mn
M ↔ Hm(z) = H(zW

m
M ) (1)

gm[n] = g[n] W−mn
M ↔ Gm(z) = G(zW

m
M ) (2)
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Fig. 1. Schematic of a modulated lter bank.

whereWM = e−j2π/M denotes theM -th root of unity.
As indicated in Figure 1, the input spectrum X(z) is rst pro-

cessed with analysis ltersHm(z). Then the decimators expand the
ltered signals Vm(z). The decimated signalXm(z) consists of the
sum of a stretched output of them-th lter bank andD − 1 aliasing
terms. At this point, the “ xed” subband weights Fm can be applied
to the decimated signals Xm(z). The expanders then compress the
weighted signals Ym(z). In the last step, the compressed signals
Um(z) are processed with the synthesis lters Gm(z) in order to
suppress the spectral images created by expanders, and the outputs
of the synthesis lters are summed together.

Upon de ning
Am,d(z) =

1

D
Fm H(zW

m
MW

d
D) G(zW

m
M ), (3)

the relationship between the input and output signals can be written
as

Y (z) =
D−1X
d=0

Ad(z) X(zW
d
D) (4)

where
Ad(z) =

M−1X
m=0

Am,d(z). (5)

The transfer function A0(z) produces the desired signal, while the
remaining transfer functions {Ad(z)} for d = 1, . . . , D − 1 give
rise to the residual aliasing in the output signal.

3. PROTOTYPE DESIGN

3.1. Analysis Prototype Design

In order to design the analysis prototype h[n], de Haan et al. [2]
de ne the objective function

εh = αh + βh (6)
where the passband response error is

αh =
1

2ωp

Z ωp

−ωp

˛̨̨
H(ejω) − e

−jωτH

˛̨̨2
dω, (7)

and the inband-aliasing distortion is given by

βh =
1

2π

Z π

−π

D−1X
d=1

˛̨̨
H(ejω/D

W
d
D)

˛̨̨2
dω. (8)

In (7) the desired lter bank response corresponds to a pure delay of
τH samples.

De ning h =
ˆ
h[0] h[1] · · ·h[Lh − 1]

˜T , de Haan et
al. [2] then demonstrate that the passband response error can be
expressed as

αh = h
T
Ah − 2hT

b + 1 (9)
where the components ofA and b can be expressed as

Ai,j =
sin(ωp(j − i))

ωp(j − i)
and bi =

sin(ωp(τH − i))

ωp(τH − i)
.

The inband-aliasing term (8) can be expressed as

βh = h
T
Ch (10)

where the components ofC can then be expressed as

Ci,j =
ϕ[j − i] sin

“
π(j−i)

D

”
π(j − i)

and
ϕ[n] = D

∞X
k=−∞

δ[n − kD] − 1.

Combining all terms above, they then seek to minimize the ob-
jective function

εh = αh + βh = h
T (A + C)h − 2hT

b + 1 (11)

Nyquist(M ) Filters

The impulse response of a Nyquist(M ) or M -th band lter [3,
§4.6.1] satis es

h[Mn] =

(
c, n = md

0, otherwise
(12)

If H(z) is the Nyquist(M ) lter, then the output of analysis lter
bank would be equivalent to the input delayed by mdM samples;
see McDonough et al. [6] for the proof.

Notice that (12) represents a much stronger condition than that
aimed at by the minimization of (7), in that (12) implies the re-
sponse error will vanish, not just for the pass band of a single lter,
but for the entire working spectrum, including the transition bands
between the passbands of adjacent lters. Hence, we replace the
term αh in the optimization criterion (6) with a constraint of the
form (12), then minimize the inband-aliasing distortion subject to
this constraint. The inband-aliasing distortion reduces to (10), whose
optimization clearly admits the trivial solution h = 0. To exclude
this solution, we impose the additional constraint hT h = 1, which
is readily achieved through the method of undetermined Lagrange
multipliers. We posit the modi ed objective function

f(h) = h
T
Ch + λ(hT

h − 1) (13)

where λ is a Lagrange multiplier. Then, by solving Ch = −λh,
we can nd the optimal prototype h. Clearly h is an eigenvector
of C. Moreover, in order to ensure h minimizes (10), it must be
the eigenvector associated with the smallest eigenvalue of C. Note
that, in order to ensure that h satis es (12), we must delete those
rows and columns of C corresponding to the components of h that
are identically zero. We then solve the eigenvalue problem (26) for
the remaining components of h, and nally reassemble the com-
plete prototype by appropriately concatenating the zero and non-zero
components. This is similar to the construction of the eigen lter de-
scribed in [3, §4.6.1].

3.2. Synthesis Prototype Design

In order to design the synthesis prototype, in [2], de Haan et al. take
as an objective function

εg(h) = γg(h) + δg(h) (14)

where the total response error is de ned as

γg(h) =
1

2π

Z π

−π

˛̨̨
A0(e

jω) − e
−jωτT

˛̨̨2
dω. (15)

τT is the total analysis-synthesis lter bank delay and the residual
aliasing distortion is
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δg(h) =
1

2π

D−1X
d=1

M−1X
m=0

Z π

−π

˛̨̨
Am,d(e

jω)
˛̨̨2

dω. (16)

Through manipulations similar to those used in deriving the quadratic
objective criterion for the analysis lter bank, it can be shown that

γg(h) = g
T
Eg − 2gT

f + 1. (17)

The components of E and f are given by

Ei,j =
M2

D2

∞X
k=−∞

h
∗[kM − i]h[kM − j] and fi =

M

πD
h[τT − i].

The quadratic form for the residual aliasing distortion is

δg(h) = g
T
Pg (18)

where the components ofP are given by

Pi,j =
M

D2

∞X
l=−∞

h
∗[l + j] h[l + i] ϕ[i − j].

In [2], de Haan et al. introduce a weighting factor v to emphasize
either the total response error (0 < v < 1) or residual aliasing dis-
tortion (v > 1):

εg(h) = γg(h) + vδg(h) = g
T (E + vP)g − 2gT

f + 1 (19)

Nyquist(M ) Constraint

As with the analysis prototype, we impose the Nyquist(M ) con-
straint on the complete analysis-synthesis prototype (h ∗ g)[n] such
that

(h ∗ g)[Mn] =

(
c, n = md

0, otherwise
(20)

in which case the total response error (15) must be identically zero.
Subject to this constraint, we minimize the residual aliasing distor-
tion (19). Satisfaction of (20) clearly reduces to a set of linear con-
straints of the form

H
T
g = c (21)

where
H = [h−m+1, . . . ,h0, . . . ,hm−1] , (22)

c = [0, . . . , c, . . . , 0]T , (23)
and hk is obtained by shifting a time-reversed version of h by kM
samples and padding with zeros as needed.

We can again resort to the method of undetermined Lagrange
multipliers for this problem and obtain a solution of a synthesis pro-
totype:

g = P
−1

H
“
H

T
P
−1

H
”
−1

c. (24)

3.3. Alternate method for a special case

The optimal prototypes can be obtained by the methods mentioned
above if matrices C and P are not singular. However, the matrices
are often singular when decimation factor D is small.

If C is singular, we can consider its nullspace, Cnull, which
consists of column vectors q ∈ Rn : Cq = 0. Obviously, inband-
aliasing distortion (10) can be driven to null by an analysis proto-
type which is represented as a linear combination of bases of the
nullspace Cnull x. We can then use the free parameters x for min-
imizing passband response error (9). Such a solution can be ex-
pressed as

h = Cnull(C
T
nullACnull)

−1
C

T
nullb (25)

where rows and columns of Cnull, A and b corresponding to the
components of h that are identically zero are deleted, and h is re-
assembled so as to keep the Nyquist(M ) constraint. For the synthesis

Fig. 2. Residual aliasing distortion εg(h) for decimation factor D,
which was calculated with the number of subbandsM = 512 and the
lter length Lh = 1024. The values for D ≤ 64 were obtained with
the alternate method.

prototype design, we can also erase residual aliasing distortion (18)
in a similar manner. De ning the nullspace ofP to bePnull, we can
express the synthesis prototype g = Pnully. Then by substituting
into (21), we have

y = (HT
P

null)+c (26)
where (·)+ indicates the peseudoinverse of (·). If the number of
column vectors ofPnull ≥ 2m−1, we can nd a synthesis prototype
g = Pnully with zero total response error and residual aliasing
distortion. In practice, when the inband-aliasing distortion is very
small,P becomes computationally singular.

4. EXPERIMENTS

The residual aliasing distortion indicates how small the lter bank
can keep the total response error even if the PR property is de-
stroyed by arbitrary magnitude scaling and phase shifts. Figure 2
presents the residual aliasing distortions from (18), where de Haan
lter banks are calculated with weighting factor v = 1.0 and 100.0,
respectively. It is clear from Figure 2 that the proposed lter banks
can provide better suppression performance for aliasing.

We performed far- eld automatic speech recognition (ASR) ex-
periments on development data from the PASCAL Speech Separation
Challenge (SSC); see Lincoln et al. [7] for a description of the data
collection apparatus. Prior to beamforming, we rst estimated the
speaker’s position with the Orion source tracking system [8]. In ad-
dition to the speaker’s position, Orion is also capable of determining
when each speaker is active. This information is useful for speaker
adaptation, given that utterances spoken by one speaker were often
much longer than those spoken by the other. Based on the aver-
age speaker position estimated for each utterance, a beamformer was
constructed. The active weights were estimated so as to achieve the
minimum mutual information (MMI) of the outputs from the beam-
formers [4]. In this work, we assumed that subband snapshots were
Gaussian-distributed. In addition to MMI beamforming, Zelinski
post- ltering and binary masking [5] were performed.

We did four decoding passes on the waveforms obtained with
the beamforming algorithms described above. Each pass of decod-
ing used a different acoustic model or speaker adaptation scheme.
Speaker adaptation parameters were estimated using the word lat-
tices generated during the prior pass. The detail of the speech recog-
nizer is presented in [9].

We rst conducted speech recognition experiments on speech
separated with MMI beamforming only and investigated four meth-
ods : (1) normal frequency domain processing with a FFT [10], (2)
cosine modulated lter bank [3, 6], which yields PR under optimal
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Table 1. WERs without post- ltering for every lter bank design
algorithm after every decoding passes.

Filter bank Pass (%WER)
1 2 3 4

FFT 88.5 71.1 58.8 55.5
PR 87.7 65.2 54.0 50.7

De Haan 88.7 68.2 56.1 53.5
Nyquist(M) 88.5 67.0 55.6 52.5

Table 2. WERs with post- ltering and binary masking for every
lter bank design algorithm after every decoding passes. WERs of
the Nyquist(M ) FB withM = 512 & D = 64 were obtained with
the alternate method.

Filter bank Parameters Pass (%WER)
M D 1 2 3 4

PR 64 - 83.7 61.5 47.5 44.7
512 - 84.6 60.5 47.6 44.4

De Haan 64 32 82.4 59.2 46.2 43.3
512 256 83.9 59.1 43.2 41.3
512 128 81.6 58.9 43.2 40.3
512 64 82.7 57.7 42.7 39.6

Nyquist(M) 64 32 80.7 57.0 44.3 42.0
512 256 84.1 58.6 43.4 40.6
512 128 81.8 54.9 42.2 39.6
512 64 81.4 56.5 42.6 40.3

conditions, (3) de Haan lter bank, and (4) Nyquist(M) lter banks
proposed here. Table 1 shows the word error rates (WERs) for every
lter bank when we set parameters for each lter bank to obtain the
best recognition performance. MMI beamforming with the PR lter
banks provided the best recognition performance when post- ltering
was not applied. Although it certainly scaled magnitudes and shifted
phases of input subband components, we didn’t observe strong alias-
ing noises. We consider that MMI beamforming with a Gaussian as-
sumption can estimate active weight vectors while keeping aliasing
cancellation. On the other hand, de Haan lter banks have the total
response error which could deteriorate the recognition performance.
FFT analysis achieved signi cantly worse performance than all the
subband processing methods.

Finally we ran recognition experiments on speech enhanced with
post- ltering and binary masking following MMI beamforming. In
that case, the PR property was not kept because of the rapid change
of lter weights. We observed the aliasing distortions when the PR
lter banks were used. In contrast, de Haan and the proposed lter
banks can suppress such aliasing noises because those lter banks
are designed so as to minimize aliasing terms individually. Table 2
shows the WERs for each lter bank with different numbers of sub-
bands M and decimation factors D. From Table 2, we can see that
the systems equipped with de Haan and Nyquist(M) lter banks can
reduce the absolute WER by about 5% compared to those with the
PR lter banks. This proves that the PR lter bank is not suitable for
adaptive processing. It is also clear from Table 2 that the proposed
method achieved a bigger WER reduction than de Haan’s algorithm.
In particular, the improvements of the recognition performance are
signi cant withM = 64 since differences of the residual aliasing and

response errors between the Nyquist(M) and de Haan lter banks are
larger than those withM = 512. The proposed lter banks achieved
the best recognition performance, WER 39.6 % with the number of
subbands M = 512 and decimation factor D = 128. On the other
hand, de Haan lter banks provided the same number withM = 512
andD = 64. Therefore, our method can be thought of as halving the
computational cost of that of de Haan.

5. CONCLUSIONS

In this work, we have proposed a new design method for lter banks
that is suitable for adaptive processing. We have demonstrated the
effectiveness of our design techniques through a set of automatic
speech recognition experiments on the multi-channel speech data
from the PASCAL Speech Separation Challenge. The proposed
method achieved the smallest WER (39.6 %) with half as much
computational costs as de Haan lter banks, while the PR lter
provided a 44.4 % WER.
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