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ABSTRACT 

A speech enhancement algorithm adapted by both intra-
frame masking properties of the human auditory system and 
inter-frame SNR variation is proposed to enhance a speech 
signal corrupted by colored noise. Herein, we employ a gain 
factor adapted by the SNR variation to reduce the spectral 
variation over successive frames, so the effect of musical 
residual noise can be mitigated. In addition, the masking 
property of the human ears is also employed to adapt the 
gain factor, enabling the imperceptive residual noise with 
energy below the noise masking threshold to be retained. 
The speech distortion is therefore reduced by preserving 
more noisy speech signals. Experimental results show that 
the proposed scheme can efficiently reduce the effect of 
musical residual noise by rendering residual noise 
perceptually white.  

Index Terms— speech enhancement, perceptual, SNR 
variation, auditory masking, colored noise. 

1. INTRODUCTION 

Many speech enhancement algorithms have been proposed 
to improve speech quality [1]-[6]. However, most methods 
still suffer from annoying musical residual noise in the case 
of colored noise corruption. This musical residual noise is 
caused by randomly spaced spectral peaks that come and go 
in successive frames, and occur at random frequencies [1]. 
Some novel schemes attempted to reduce the effect of 
musical residual noise by the human auditory system  [2], 
[3]. This auditory system is based on the fact that the human 
ears cannot perceive residual noise when this noise level 
falls below the noise masking threshold (NMT). Lu and 
Wang [2] proposed a wavelet-domain optimal linear 
estimator which incorporated the masking properties of the 
human auditory system to make the residual noise inaudible. 
In addition, Lu also derived a smoothing factor as a second 
stage to reduce the effect of musical residual noise [3]. An 
accurate estimate of the a priori SNR is critical for 
eliminating the musical noise. Hasan et al. [4] presented a 
method to find an improved estimate of the a priori SNR. 
Hence, this estimated SNR was applied to a subtraction-
based algorithm, thus, allowing the effect of musical residual 

noise to be reduced. Improved results were obtained in terms 
of speech quality measures for various types of noise at 
different SNR levels.  

Based on the above findings, utilizing either the noise 
masking properties or the improved estimate of the a priori 
SNR to adapt a speech enhancement system is beneficial to 
enhance speech signals degraded by colored noise. However, 
musical residual noise still exists after denoising. In this 
paper, we propose to incorporate both the masking 
properties and the a priori SNR to adapt a gain factor. In 
turn, employing this gain factor to enhance a noisy speech 
signal would render the residual noise perceptually white. 
The effect of musical residual noise is accordingly reduced. 
Unlike the gain factor adapted by the a priori SNR [1], [4], 
the proposed gain factor is not only adapted by the a priori 
SNR, but also adapted by the noise masking threshold 
(NMT). Experimental results show that the proposed 
approach outperforms the modified Ephraim and Malah 
suppression rule [5] and a method adapted by the a priori 
SNR and the SNR variation of consecutive two frames [4] 
for enhancing a speech signal corrupted by various kinds of 
noise. 

2.  GAIN FACTOR ADAPTED BY NMT AND SNR 

A noisy speech signal ),( nmy can be modeled as the sum of 
clean speech ),( nms and additive noise ),( nmd in the 
frame m of the time domain, i.e., ),(),(),( nmdnmsnmy += .
The spectral estimate of speech signal ),(ˆ mS  is obtained by 
multiplying a gain factor ),(mg  with the noisy spectrum 

),(mY  of a subband, i.e. ),(),(),(ˆ mYmgmS ⋅=
A spectral distortion measure ),(mE  is defined as the 

difference between the short-term spectra of clean speech 
),(mS and of enhanced speech ),(ˆ mS . This spectral 

distortion specifies the performance of a speech 
enhancement system, and is given by ),(ˆ),( mSmE =

),(),(),( mEmEmS RS +=− , where the spectra of speech 
distortion ),(mE S and that of residual noise ),(mER are 
expressed as 

),(]1),([),( mSmgmES ⋅−= (1)
),(),(),( mDmgmER ⋅= (2)

where ),(mS  and ),(mD  represent the spectra of speech 
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and of noise signals, respectively. 
  Assuming the noise signal is additive, and is uncorrelated 

with a speech signal. The gain factor ),(mg  can be 
optimized by minimizing the short-term spectral energy 
associated with the speech distortion, subject to a constraint 
on the short-term spectral energy related to residual noise 
below the noise masking threshold (NMT) [2]: 

{ }
),(),(constraint  thesubject to
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where ),(mT  is the NMT corresponding to the frequency 
bin . The NMTs are all identical in a critical band. 
  In order to derive the gain factor ),(mg , a cost function 

),(mJ P  can be formulated in terms of the speech 
distortion and the residual noise [2]:  

]),(),([),(),(),( 22 mTmEmmEmJ RSP −⋅+= μ (4)
where ),(mμ  is the Lagrangian multiplier.  
 Substituting (1) and (2) into (4), then to partially 

differentiate ),(mJ P  with respect to the gain factor 
),(mg , an optimal gain factor can be derived as 
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where ),(mprioγ = |),(|/|),(| 22 mDmS is defined as the a 
priori SNR. 

The optimal Lagrangian multiplier ),(mμ can be  
derived as [2]  

),(0,1
),(

1
),(
|),(|max),(
2

m
mmT

mS
m prio

prio

γ
γ

μ ⋅−⋅= (6)

Substituting (6) into (5), a perceptual gain factor ),(mg P

can be derived as 
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The a priori SNR ),(mprioγ is unknown and is critical to 
the perceptual gain factor ),(mg P  in (7). An accurate 
estimate of the a priori SNR can significantly reduce the 
musical residual noise produced by a speech enhancement 
system. An improved estimate of the a priori SNR can be 
obtained by a time-frequency varying averaging factor 

),(mα , given as [4] 

⋅−

⋅−+−⋅=
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where 22 |),1(ˆ|/|),1(ˆ|),1(ˆ ωωωγ −−=− mDmSmprio . =),( ωγ mpost

22 |),(ˆ|/|),(| ωω mDmY is defined as the a posteriori SNR.
2|),1(ˆ| −mS  and 2|),1(ˆ| −mD  represent the spectral 

estimates of speech and of noise in the frame (m-1). ][⋅P
denotes positive half-wave rectification. 

The choice of the averaging factor ),(mα  in (8) is 
critical. As ),(mα  approaches unity, the SNR varies 

slightly over the successive frames, enabling the effect of 
musical residual noise to be reduced. The sacrifice is that 

),(ˆ mprioγ with slight variation would fail to respond to the 
change of a speech signal. On the contrary, if ),(mα
approaches zero, the SNR variation goes high. The spectral 
magnitudes of residual noise vary rapidly in successive 
frames, resulting in the effect of musical residual noise. 
Therefore, the SNR estimate ),(ˆ ωγ mprio  given in (8) should 
be as close as possible to the a priori SNR ),(mprioγ . A 
minimum-mean-square-error estimator was proposed to 
optimize ),(mα  by minimizing the error ),( ωα mJ  [4],  

}),1(ˆ)],(),(ˆ{[),( 2 −−= mmmEmJ prioprioprio γγγωα (9)
given the SNR estimate of previous frame ),1(ˆ ωγ −mprio .

Substituting (8) into (9), the error function ),( ωα mJ  can 
be decomposed as 
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The first and the second moments of the a posteriori SNR 
are given as 

1),()},({ += mmE priopost γγ (11)
and 

1),(2),(2)},({ 22 +⋅+⋅= mmmE priopriopost γγγ . (12)
In addition, we also use the relationship [6],  

),(2),(/}|),({| 244 mmmSE prioD γσ ⋅= . (13)
which follows from the definition of the fourth moment with 
the assumption that speech spectral magnitude |),(| mS has 
a Rayleigh distribution. 

Substituting (11), (12) and (13) into (10), hence, 
differentiating the error function with respect to ),(mα ,
and setting the result to zero, an optimal smoothing factor is 
then derived as 
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As the priori SNR ),( ωγ mprio  is unknown, an approximate 
value of ),(* ωα m  given in (14) is essential. For simplicity, 
we assume that the a posteriori SNR ),( ωγ mpost  is greater 
than unity. The a priori SNR can be approximately 
computed by 1),(),( −≈ mm postprio γγ .

In turn, substituting the optimal averaging factor 
),(* ωα m into the term of ),( ωα m in (8) yields an improved 

estimate of the a priori SNR ),(ˆ ωγ mprio
given as 
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where 
).,1-(ˆ),()(1, mm priopriomm γγ −=Δ − (16)

)(1, −Δ mm  represents the SNR variation for the frames m and 
m-1 in the subband .

In order to understand the smoothed version of SNR is 
varied by the SNRs of previous frame ),1(ˆ −mprioγ and of 
current frame ),(mprioγ . The relationship among them is 
demonstrated in Fig. 1. In the case of noise-dominated 
region, the a posteriori SNR ),( ωγ mpost  tends to uniform 
variation. The smoothing factor ),(* mα  given in (14) 
would approach unity. Applying this smoothing factor to 
estimate the SNR given in (8) would reduce the variation of 
the SNR estimate. In turn, applying this SNR to adapt a 
speech enhancement algorithm can reduce the spectral 
variation in successive frames. Accordingly, the spectra of 
residual noise are less annoying while the effect of musical 
residual noise is reduced. In the case of speech-dominated 
region, ),(* ωα m  attains a small value, enabling ),(ˆ ωγ mprio

given in (15) to respond to the change of speech signal. The 
speech quality is therefore maintained. 

Substituting (15) into (7), the proposed gain factor can be 
derived as shown in (17). This gain factor ),(* mg  is 
varied with the intra-frame NMT ),(mT , and the inter-
frame SNR variation )(1, −Δ mm . If the SNR variation 

)(1, −Δ mm  is much greater than the a priori SNR ),(mprioγ ,

the smoothing factor given in (14) tends to zero. The 
smoothing effect is only slight in estimating the SNR. It 
enables the sudden change of speech signal to be preserved, 
such as unvoiced speech signals.  Conversely, if the SNR 
variation )(1, −Δ mm  is much less than the a priori SNR 

),(mprioγ , the smoothing factor ),(* mα given in (14) 
approaches unity. As the optimal smoothing factor 

),(* ωα m increases, the smoothing effect increases in 
estimating the SNR. Substituting this SNR estimate to (17) 
yields a higher value of gain factor, enabling the noisy 
speech signal to be retained. Accordingly, the speech 
distortion decreases.  

3. EXPERIMENTAL RESULTS 

In the experiments, speech signals are Mandarin Chinese 
spoken by five female and five male speakers. Noisy speech 
signals are obtained by adding a clean speech signal with 
F16-cockpit, factory, and babble (speech-like) noise signals 
which are extracted from the Noisex-92 database. Three 
SNR levels, including 0 dB, 5 dB and 10dB, are used to 
evaluate the performance of a speech enhancement system. 

The minimum statistics algorithm is performed to estimate 
the power of noise for each frequency bin [7]. Both modified 
Ephraim and Malah Suppression Rule (modEMSR) and 
Hasan’s method [4] were conducted for comparisons. 

Table 1 presents the performance comparisons in terms of 
the modified Bark spectral distortion (MBSD). The minimal 
MBSD corresponds to the best speech quality [8]. In the 
cases of factory and babble noise corruption, the modEMSR 
method slightly outperforms Hasan’s method. The proposed 
method obtained much lower values of the MBSD than the 
other two methods. It is attributed to that the proposed 
method employs the NMT )(mT i

j  as a major parameter to 
adapt the gain factor given in (17). In addition, the proposed 
method also determined the gain factor based on the critical 
band which matches the perception of the human ears. These 
two reasons enable the proposed method to substantially 
outperform the other two methods in terms of the MBSD. 

Figure 2 shows the spectrograms of a speech signal 
corrupted by factory noise (Fig. 2(b)) with Avg_SegSNR = 0 
dB. Thus, three methods do not over-attenuate the noisy 
speech signal. The enhanced speech signals demonstrated in 
Figs. 2(c), 2(d) and 2(e), are not suffered from serious 
speech distortion. In addition, the spectrograms also reveal 
fine structure of spectra in speech-activity regions. Therefore, 
a muffled signal is absent at the output of each speech 
enhancement method. Comparing the spectrograms in 
speech-pause regions, Hasan’s method shown in Fig. 2(d) is 
better able to remove the background noise than the other 
two methods shown in Figs. 2(c) and 2(e). However, the 
spectral variation in Fig. 2(d) for Hasan’s method is the 
largest, causing chirps in the enhanced speech signal. In Fig. 
2(e), the spectrogram of residual noise tends to perceptually 
white for the proposed method, enabling the residual noise 
to sound less annoying. Consequently, adapting a gain factor 
by both inter-frame SNR variation and intra-frame masking 
property is beneficial to render the residual noise 
perceptually white. 

4. CONCLUSIONS

Integrating both the intra-frame masking properties of the 
human ears and the inter-frame SNR variation to adapt the 
gain factor of a subband was proposed. Experimental results 
show that this gain factor cannot only remove the 
background noise, but also renders residual noise 
perceptually white for the colored noise corruptions.  
Accordingly, the proposed approach offers less annoying 
residual noise than a method adapted by the SNR only or by 
the inter-frame SNR variation, such as the modified EMSR 
and Hasan’s methods. 
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Table 1. Performance comparisons of modified Bark spectral 
distortion for the enhanced speech in various noises. 

 SNR modified Bark spectral distortion 
Noise type (dB) noisy modEMSR Hasan proposed

0 16.71 6.96 6.56 2.69 
F16 5 8.01 3.02 2.93 1.09 

10 3.47 0.99 1.05 0.35 
0 16.05 6.96 6.99 3.62 

factory 5 7.32 2.89 2.89 1.51 
10 3.08 1.01 1.12 0.56 
0 13.65 7.03 7.36 3.59 

babble 5 6.15 2.73 2.97 1.43 
10 2.41 0.99 1.15 0.52 

Fig. 1. Smoothed SNR versus the SNRs of previous (SNRprev) and 
current (SNRcurr) frames. 
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(a) 

(b) 

(c) 

(d) 

(e) 
Fig. 2. Spectrograms of clean speech spoken by a female speaker, 
(a) clean speech, (b) noisy speech (corrupted by factory noise with 
average SegSNR = 0 dB), (c) enhanced speech (modified EMSR), 
(d) enhance speech (Hasan’s method), and (e) enhanced speech 
(the proposed method). 
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