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ABSTRACT

We investigate several feature normalization and scaling approaches
for use in speaker verification based on support vector machines.
We are particularly interested in methods that are “knowledge-free”
and work for a variety of features, leading us to investigate MLLR
transforms, phone N-grams, prosodic sequences, and word N-gram
features. Normalization methods studied include mean/variance nor-
malization, TFLLR and TFLOG scaling, and a simple nonparamet-
ric approach: rank-normalization. We find that rank-normalization is
uniformly competitive with other methods, and improves upon them
in many cases.

Index Terms— Speaker verification, SVM modeling, feature
normalization, kernel design.

1. INTRODUCTION

A great deal of progress and innovation in speaker recognition has
been brought about by the use of support vector machines (SVMs)
as speaker models. Through the ingenious design of features and
kernels, SVMs have been applied to speaker modeling for a wide
range of phenomena, from low-level cepstral observations to high-
level prosodic and lexical patterns. The typical steps involved in
SVM speaker modeling are

1. Raw feature extraction: This step computes the fundamental
observations associated with a speech sample, such as frame-
level cepstral features, phone N-grams or word N-grams [1].

2. Feature reduction: This step reduces the variable-length se-
quence of observations associated with a speech sample to a
fixed-length vector. For example, cepstral observations are
condensed into averages of polynomials over the cepstral co-
efficients [2], or N-grams are represented by the vector of rel-
ative frequencies for a fixed subset of (frequent) N-grams [3].

3. Feature normalization: Here the components of the fixed fea-
ture vector are scaled or warped so as to enable more effective
modeling of speaker differences.

4. Standard kernel computation: The reduced, normalized fea-
ture vector is combined with a standard kernel function, such
as linear, quadratic, or exponential, as is available with most
SVM implementations.

The boundaries between these steps are not defined a priori, but
have emerged as useful generalizations from common practice. For
example, one can always argue about where to draw the line between
raw and reduced features, or between normalization and kernel, be-
cause ultimately the entire process defines the kernel function used
by the SVM. However, to the extent that many different systems
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share common approaches to feature extraction, reduction, and nor-
malization, it is useful to study the above steps individually.

In this paper, we focus on feature normalization, precisely be-
cause a common repertoire of methods has been proposed in the lit-
erature and applied to a range of features. Also, we will simplify
the study by fixing the standard kernel function to be the linear vec-
tor inner product, since it has empirically been shown to give best
or near-best results with a great many feature sets commonly used
in speaker recognition (after suitable feature design and normaliza-
tion, of course). Intuitively, feature normalization is needed because
SVMs (unlike some other classifier architectures) are not invariant
to the scale of their input feature spaces: multiplying a feature di-
mension by a fixed constant gives that dimension more weight in the
value of the SVM objective function and, therefore, in the choice of
the decision boundary. Therefore, in the absence of prior knowledge,
one should choose a normalization method that leaves all feature di-
mensions in a comparable range.

In the remainder of the paper, we will examine several normal-
ization methods proposed in the literature that all have this intuitive
property, and apply them to a set of speaker models spanning the
range from acoustic to stylistic, or “low-level” to “high-level.” Sec-
tion 2 summarizes the data and systems used in our study. Section 3
describes the normalization methods examined. Section 4 presents
and discusses the results obtained, followed by some brief conclu-
sions and suggestions for future work in Section 5.

2. MODELS AND DATA

The following speaker modeling approaches were used to generate
features for our study.

2.1. MLLR transform features

The raw features used by this approach are the PLP-cepstrum vectors
used by the second pass of the SRI speech recognizer. Features are
reduced to fixed-length vectors by computing maximum likelihood
linear regression (MLLR) adaptation transforms for each conversa-
tion side, and then using the transform coefficients as derived fea-
tures [4, 5]. The system computes eight 39 x 40-dimensional affine
transforms, corresponding to eight phone classes, for the Gaussian
means of the speech recognition models. This process is carried
out twice, using a male and a female recognition model, respec-
tively, regardless of the speaker gender, thereby yielding a vector
of 2 x 8 x 39 x 40 = 24, 960 feature components.
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Table 1. Data sets used

Testset | SRE-05 English | SRE-06 Common Cond.
Training | 1-side | 8-side | 1-side 8-side
Models 587 463 517 483
Trials 26270 | 20683 | 24013 17547

2.2. Phone N-gram features

Here we use the phone recognition-based modeling paradigm of [3]
with the lattice-based refinement of [6]. An English open-loop phone
recognizer is run on each conversation side, generating lattices. The
expected frequencies for unigrams, bigrams, and trigrams are com-
puted (i.e., N-grams are weighted according to their posterior prob-
ability of occurrence in the lattice). The 8,483 most frequent phone
N-grams from the background data are determined a priori, and a test
feature vector consists of the relative frequencies of those N-grams
in the conversation side.

2.3. Prosodic sequence features

This system models syllable-based prosodic features (SNERFs) [7].
Raw features are based on estimated F0, energy, and phone duration
information extracted over syllables inferred via automatic syllabi-
fication of automatic speech recognition (ASR) output; inter-word
pauses and their durations are also represented. Prosodic feature
sequences are reduced to fixed-length vectors by a particular imple-
mentation of the Fisher score [8]. Features modeling sequences of
one, two, and three syllables are used. The resulting feature vector
has dimension 38,314.

2.4. Word N-gram features

This model captures idiosyncratic word usage, as suggested by [1],
but using the same N-gram frequency vector representation as for
phone N-grams (see above) [3]. This approach was shown to be su-
perior to likelihood ratios obtained from languages models [9]. The
126k most frequent word N-grams up to length 3 are extracted from
the 1-best hypotheses of the ASR system over the background cor-
pus. The test feature vector corresponds to the relative frequencies
of those N-gram types in the test conversation side. Note that com-
putation with these high-dimensional feature vectors benefits greatly
from the sparse nature of the vectors, i.e., most components of a
given vector are typically zero. This will be an important considera-
tion in feature normalization.

2.5. Data

The models and normalization methods (to be described next) were
tested on subsets of the NIST 2005 and 2006 speaker recognition
evaluation (SRE) data sets. The data was drawn from the LDC
Mixer data collection, and was composed of telephone conversa-
tions of about 5 minutes in length (about 2.5 minutes of speech per
conversation side) [10, 11]. We studied the 4-wire (separate chan-
nels) speaker verification task with both 1 and 8 conversation sides
as target training data, and 1 conversation side as test data. For SRE-
05, all English-language trials of these conditions were included;
for SRE-06, only the “common condition” trials, which by defini-
tion also used only English language, were used. Table 1 gives an
overview of the amount of data and number of trials in each condi-
tion.
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For background (impostor) training data, we used portions of
various telephone speech corpora available from LDC and NIST, in-
cluding Switchboard-II Phases 2 and 3 (SRE-03), Switchboard-II
Phase 5, Fisher Phase 1, and Mixer (SRE-04), comprising a total of
4814 conversation sides. All training and test data was transcribed
automatically by various versions of SRI’s telephone recognizer [12]
to generate the phone-level and word-level transcripts, MLLR trans-
forms, and alignments needed to extract the features used in our var-
ious speaker models.

3. NORMALIZATION METHODS

3.1. Mean/variance normalization

One of the most common approaches for feature normalization, es-
pecially when close-to-Gaussian distribution is assumed, is subtrac-
tion of the population mean and scaling to achieve unit variance:
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where ; is the raw value of the ¢th feature, Z; is the feature mean,
0., its standard deviation, and ;' the normalized feature value.

This method has the intended effect of roughly equating the dy-
namic ranges along each dimension, although this is true only to the
extent that the different feature distributions follow similar shapes.
Thus, this normalization scheme might be inappropriate for sys-
tems with very heterogeneous features, such as SNERFs, where, for
example, a pitch-based feature might be log-normally distributed,
whereas a duration feature is more likely to have an exponential or
Poisson-shaped distribution.

Note that mean normalization causes sparse feature vectors to
become less sparse, resulting in additional computational expense
when dealing with large sparse feature spaces, such as used by the
word N-gram model. Fortunately, SVMs are invariant to additive
translations in the feature space, so a simple variance normalization
“i is sufficient for our purposes.
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3.2. TFLLR scaling

Campbell et al. [3] have proposed a kernel for N-gram features that
approximates a log likelihood ratio computed from N-gram frequen-
cies (term frequency log likelihood ratio, or TFLLR). The method
boils down to a linear inner product kernel applied to a feature vector
consisting of the N-gram frequencies with scaling factors applied:

@ = dix; 2)

where #, is the frequency of the #th N-gram in the speech sample,
and d; is a weight proportional to the square root of the inverse over-
all frequency f; of that N-gram:

1
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The intuitive justification for the inverse frequency weighting is
that overall rare N-grams carry more information, so their d, weight
will be larger than for ubiquitous N-grams. Numerically, the effect
is again one that tends to make the dynamic ranges more similar.
This occurs because rare N-grams have small raw feature values, and
therefore small absolute variation, but larger scaling factors (though
the scaling is attenuated by the square root function).



3.3. TFLOG scaling

In [13], a generalization of TFLLR scaling is proposed that is empir-
ically better suited for very sparse features, such as word N-grams.
In this approach, the feature scaling weight is computed as

dy = min{C, g(~)} )

where C is a constant that sets the maximum feature weight, and
¢ 1s a squashing function that compresses the dynamic range of the
inverse term frequency (replacing the square root in (3)). They find
empirically that g(r) = log v + 1 with C' = 10 gives good results
on word N-grams, and call this the TFLOG kernel (or scaling, in our
terminology). The benefit of TFLOG is to limit the impact of very
rare N-grams, which would otherwise have their noisy frequency
estimates amplified by large scale factors.

3.4. Rank normalization

Finally, we investigate a nonparametric approach to normalization
that is not based on estimating any distribution parameters. The basic
idea is to replace each test feature value by its rank in the background
data, followed by a normalization to the unit interval. For example,
if a value z; would be ranked 10th out of 100 among the background
data values, its normalized values would be 10/100 = 0.1. If a value
does not occur exactly in the background data the rank of the nearest
value below it is used, and a value exceeding the maximum observed
value is assigned a normalized value of 1. Formally,

o Hy € By <z}
| 5]
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where B is the background data set, and | X'| denotes the cardinality
of set X.

A useful consequence of this method is that zero values in non-
negative distributions are mapped to zero, thus preserving sparse-
ness of feature vectors (note that N-gram frequency features are non-
negative).

Rank normalization is a priori attractive because of its lack of
assumptions about the underlying distributions. The strongest mo-
tivation for it comes from two related properties: any feature distri-
bution, to the extent that it matches the background distribution, is
warped to a uniform distribution over the interval [0, 1]. Conversely,
the kernel-induced distance between datapoints

D(z.y)* = K(z.2) + K(y,y) = 2K (z,y) = |z = y|* (6)

(in the case of a linear kernel K (=, y)) is such that along any sin-
gle feature dimension, two points « and y are separated by a dis-
tance proportional to the number of background data samples falling
between = and y. In other words, the normalization stretches the
feature space in areas of high population density and shrinks it in
areas of low density. Another consequence is that rank normaliza-
tion is invariant under any monotonic transformation of the input
feature space. For example, it would yield the same results if the in-
put features were first subjected to any of the normalization methods
discussed earlier (with the exception of TFLOG for C' < oc).

Note that we have previously advocated use of rank normaliza-
tion for certain SVM models [4, 7]; however, this is the first time we
are conducting a systematic study of different normalization meth-
ods for a range of speaker models.
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Table 2. Results for 1-side training condition. The best result for
each model and condition is highlighted.

SRE-05 SRE-06
Normalization EER | DCF | EER | DCF
MLLR transforms
None 6.15 | 222 | 529 | 246
Variance 534 | 175 | 3.94 | .188
Rank 522 | .161 | 3.61 | .177
SNERF prosodic features
None 15.57 | .612 | 14.19 | .625
Variance 13.96 | 571 | 14.08 | .622
Rank 13.88 | 544 | 13.65 | .601
Phone N-grams
None 14.64 | .536 | 12.30 | .558
Variance 12.62 | 457 | 10.84 | .519
TFLLR 12.66 | 468 | 10.73 | 512
Rank 12.18 | 428 | 10.30 | .444
Word N-grams
None 2476 | 854 | 2298 | .837
Variance 32.04 | 982 | 31.07 | .983
TFLOG, C' =10 | 23.10 | .824 | 21.79 | .806
TFLOG, C = oo | 23.14 | .820 | 21.63 | .800
Rank 2249 | 799 | 23.19 | .800
4. RESULTS

We tested the various normalization methods across the range of
SVM speaker verification systems described above. Results are
given in terms of both equal error rate (EER) and minimum deci-
sion cost function times 10 (DCF). Tables 2 and 3 give results for
the 1-side and 8-side training conditions, respectively. Note that for
N-gram-based systems we examined the weighting normalizations
proposed by Campbell et al. as our baselines, whereas for the MLLR
and prosodic features that role is played by variance normalization.
Also note that TFLLR and TFLOG apply only to count-based fea-
tures, i.e., they are not applicable to MLLR transforms and SNERF
features.

Results show that all systems benefit from normalization, as ex-
pected. Except for word N-grams, rank normalization delivers re-
sults that are better than other methods. For phone N-grams, vari-
ance normalization perform about the same, and is not much worse
than rank normalization. Somewhat surprisingly, TFLLR is not as
good as either variance or rank normalization for phone N-grams,
in spite of having been originally introduced for this type of model
[3]. Rank normalization also gives the best, or close to the best re-
sults, for 1-side training with word N-grams, but TFLOG seems to
be consistently better for 8-side training. This seems to indicate
that TFLOG is better in principle, but that rank normalization is
more robust to the less reliable frequency estimates obtained from
1-conversation-side training. Unlike Campbell et al. [14], we find
that TFLOG with C' = 10 is not better than C' = oo, which could
be due to any number of differences, such as the recognition systems
used. Also note that variance normalization does a reasonable job
for all models, except for word N-grams, where both frequency and
variance estimates are likely to be very unreliable for rare N-grams,
and small variances have an amplifying effect on the noisy frequency
estimates.

Finally, we note that the best-performing model, the MLLR-
SVM, shows the largest relative error reductions from normalization.
This result is at odds with a recent report showing rank normalization



Table 3. Results for 8-side training condition. The best result for
each model and condition is highlighted.

SRE-05 SRE-06
Normalization EER | DCF | EER | DCF
MLLR transforms
None 3.04 .083 244 | .091
Variance 2.56 .066 1.99 073
Rank 246 | .0.62 | 2.19 | .074
SNERF prosodic features
None n/a n/a 6.16 287
Variance n/a n/a 5.31 275
Rank 574 | 207 | 491 241
Phone N-grams
None 6.47 235 5.82 | 282
Variance 5.16 170 | 4.83 224
TFLLR 5.16 180 5.02 | 231
Rank 497 | .151 448 | .208
Word N-grams
None 9.89 444 | 9.95 476
Variance 18.33 | .807 | 18.81 | .845
TFLOG, ' =10 | 8.93 381 8.96 | .422
TFLOG, C' =00 | 8.78 377 | 8.96 | .422
Rank 9.51 355 | 10.00 | 424

to be worse than no normalization for MLLR-SVM modeling [15].
However, there were many differences in the way transforms were
estimated in the two cases, which could account for the discrepancy.

5. CONCLUSIONS AND FUTURE DIRECTIONS

We have argued that nonparametric normalization of SVM features
based on ranking of feature values provides an a priori attractive and
intuitive approach in the absence of specific knowledge about the
feature distributions. Experimentally, rank normalization is compet-
itive, and in most cases superior to other commonly used methods,
for a range of SVM-based speaker recognition systems.

Much work remains to be done in the area of feature normaliza-
tion. For one thing, we have not yet systematically examined the ef-
fects of feature compensation (such as nuisance attribute projection)
or score normalization (such as TNORM) on the choice of feature
normalization. Also, it is intriguing to consider the possibility of
multidimensional variants of rank normalization, i.e., methods that
warp the joint distribution of features toward uniform, and not just
the marginal distributions along individual feature dimensions. The
idea is promising given that, in the realm of parametric approaches,
covariance normalization has been shown superior to diagonal vari-
ance normalization for SVMs [16].
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