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ABSTRACT

This paper presents a new approach to feature analysis in automatic
speech recognition (ASR) based on locality preserving projections
(LPP). LPP is a manifold based dimensionality reduction algorithm
which can be trained and applied as a linear projection to ASR fea-
tures. Conventional manifold based dimensionality reduction algo-
rithms are generally restricted to batch mode implementation and it
is difficult in practice to apply them to unseen data. It is argued that
LPP can model feature vectors that are assumed to lie on a nonlin-
ear embedding subspace by preserving local relations among input
features, so it has a potential advantage over conventional linear di-
mensionality reduction algorithms like principal components analy-
sis (PCA) and linear discriminant analysis (LDA). Experimental re-
sults obtained on the Resource Management (RM) data set showed
that when LPP based dimensionality reduction was applied in the
context of mel frequency cepstrum coefficient (MFCC) based fea-
ture analysis, a significant reduction of word error rate (WER) was
obtained with respect to standard MFCC features.

Index Terms— speech recognition, feature extraction, manifold
learning, locality preserving projections

1. INTRODUCTION

Interest in feature space dimensionality reduction in ASR is moti-
vated largely by the requirement that ASR feature vectors provide
an accurate representation of both static and dynamic information in
speech while at the same time contain a minimum of information
that would be considered irrelevant or redundant. The most widely
used approaches for feature analysis in ASR are based on various
forms of cepstrum based feature analysis. Cepstrum feature vec-
tors are obtained for ASR by performing linear predictive or filter
bank based spectral analysis over a windowed speech segment, ap-
plying some form of non-linear amplitude compression, and then
applying a discrete cosine transform. These static feature vectors are
estimated over 20 to 30 millisecond windows and updated at a rate
of 100 frames per second. In addition to static feature vectors, dy-
namic information characterizing the temporal change in the vicinity
of the analytic window is also included in the feature representation.
The most common method for integrating dynamic information is to
compute first and second order differences of adjacent static feature
vectors and simply augment the static feature vector with the first
and second order difference vectors. The disadvantage of this ap-
proach is that the components of the augmented feature vector are
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strongly correlated. Another method for integrating dynamic infor-
mation is to simply to concatenate as many as ten neighboring static
feature vectors into a single feature vector. Of course, this repre-
sentation also results in strongly correlated vector components and
feature vector dimensions of well over 100.

There has been a great deal of work directed at obtaining linear
feature space transformations that reduce the dimensionality of these
high dimensional representations. These techniques all have the ef-
fect of reducing the correlation between vector components while
maximizing some definition of class separability [1, 2, 3]. The work
described in this paper focuses on the use of manifold based methods
for reducing feature space dimensionality ASR. The motivation for
this approach are recent results demonstrating that benefits can be
derived by coding the acoustic speech signal in a nonlinear manifold
space which has “local Euclidean” properties [4, 5, 6].

The potential advantages of this type of representation is illus-
trated by the simple two dimensional example in Figure 1. Points
A, B, C, and D lie in a two-dimensional manifold represented by
the curve in Figure 1. For neighboring points on the manifold, such
as C and D, the distance between the two points can be approxi-
mated by the Euclidean distance directly. However, for points that
are widely separated on the manifold, such as A and D, the Eu-
clidean distance measured between the two points will much differ-
ent than the distance measured within the manifold space. Conven-
tional linear projection methods, such as LDA and PCA, are efficient
at describing Euclidean space. However, for data that can be charac-
terized as being embedded in a manifold space, nonlinear methods
can be considered for revealing the relationship of data along the
manifold. Techniques that have been proposed for this purpose in-
clude ISOMAP [7], locally linear embedding (LLE) [8], and Lapla-
cian eigenmaps [9]. All of these methods learn the global struc-
ture of nonlinear manifolds by exploiting local mutual relationships
among input data vectors and have been applied to dimensionality
reduction and data visualization. However, in ISOMAP, LLE and
Laplacian eigenmaps, the data projections are modeled by nonlinear
algorithms and can only be applied to the data that was used to train
the parameters of the projection.

In this paper, locality preserving projections (LPP) [10, 11] are
applied to the ASR dimensionality reduction problem described above.
High dimensional vectors obtained by concatenating consecutive static
feature vectors are projected to a low dimensional subspace. LPP is
an extension of Laplacian eigenmaps. The LPP based projection
from a high dimensional space to a low dimensional space is de-
scribed by a transformation matrix instead of using a nonlinear map-
ping method defined on the training set. Hence, it is easy to apply
the transformation to unseen data while, at the same time, LPP is
still able to preserve the local relationships between input data after
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Fig. 1. Illustration of dimensionality reduction for two-dimensional
data embedded in a nonlinear manifold space with relative position
information reserved.

being projected onto a low dimensional subspace.

The rest of the paper is organized as follows. A brief intro-
duction to LDA-based feature extraction is given in Section 2. In
Section 3, the LPP algorithm and LPP based feature extraction for
ASR is presented. The results of an experimental study comparing
LDA and LPP based feature extraction on the Resource Management
(RM) task is described in Section 4. Summary and conclusions are
provided in the last section.

2. LDA BASED FEATURE EXTRACTION

LDA is a widely used dimensionality reduction approach in speech
recognition which acts to preserve the discriminating characteris-
tics of input data in the lower-dimensional transformed space [1,
12, 13]. Consider a set of dh dimensional input data vectors X =
{�x1, �x2, · · · , �xN}, �xi ∈ Rdh , where each vector belongs to one of
P classes. The dl dimensional representation Y = {�y1, �y2, · · · , �yN}
of X is obtained by the linear transformation,

�yi = W ′�xi (1)

where �yi ∈ Rdl , dl < dh, and W is a dh × dl matrix.

The matrix W is obtained by LDA so that the linear class sepa-
rability is maximized by solving the following objective function,

max
�w

�w′SB �w

�w′SW �w
, (2)

where the scatter matrices SB and SW are obtained from the class
labeled data vectors,

SB =
P�

p=1

Np(�μ(p) − �μ)(�μ(p) − �μ)′, (3)

SW =

P�
p=1

� Np�
i=1

(�x
(p)
i − �μ(p))(�x

(p)
i − �μ(p))′

�
. (4)

In Equations 3 and 4, the matrix SW is the within-class scatter ma-

trix, SB is the between-class scatter matrix, �x
(p)
i is the i-th vector in

the class p, Np is the total number of input data in class p, �μ(p) is the
mean of class p and �μ is the mean of all input vectors. Equation 2
can be solved as a generalized eigenvector problem. The transfor-
mation matrix W is formed from the eigenvectors associated with dl

largest eigenvalues.

3. LOCALITY PRESERVING PROJECTIONS BASED
FEATURE EXTRACTION

This section describes the theory of locality preserving projections
and their application to feature analysis for ASR. First, LPP is pre-
sented as a technique that is able to identify lower dimensional spaces
that preserve local relationships among data vectors in the trans-
formed space even when the data is assumed to be embedded in a
nonlinear manifold space. Second, issues relating to the estimation
of LPP based transforms on ASR tasks with large amounts of train-
ing data are discussed.

3.1. Locality preserving projections

The optimality criterion used for LPP is based on extending the local
mutual relationships that exist among the input data vectors to the
vectors of the projected subspace. That is,

DN = min
�
i,j

(�yi − �yj)
′(�yi − �yj)si,j , (5)

In Equation 5, the local relationships among the input data vectors
are described by the terms of the similarity matrix, S = {si,j}N×N ,
where the similarity relationship is defined as follows,

si,j =

�
exp (−‖�xi − �xj‖2/ρ), e(�xi, �xj) = 1
0, e(�xi, �xj) = 0

. (6)

In Equation 7, e(�xi, �xj) is an indicator function designating whether
�xi and �xj are neighbors and ρ is the heat kernel factor . The neigh-
borhood of a given input vector, �xi, can be defined as the K-nearest
vectors to �xi or, alternatively, as the set of vectors that fall within
a maximum distance defined by threshold ε from �xi. In this paper,
the neighborhood of �xi is defined by its K-nearest neighbors where
K = 100.

Suppose yi = �w′�xi is one-dimensional representation of origi-
nal feature �xi, and substituting �yi in Equation 5 by yi, the optimiza-
tion criterion in Equation 5 can be rewritten as

1

2
DN =

1

2

�
i,j

(yi − yj)
2si,j

=
1

2

�
i,j

(�w′�xi − �w′�xj)
2si,j

=
�

i

�w′�xi(
�

j

si,j)�x
′
i �w −

�
i,j

�w′�xi(si,j)�x
′
j �w

= �w′XLX ′ �w (7)

where L = C − S is the Laplacian matrix. The matrix C is a
diagonal matrix whose entries are the column sums of S, ci,i =�

j si,j . In order to get an unique solution, a constraint is imposed
on the magnitude of the transformed vectors,

�w′XCX ′ �w = 1. (8)

Hence, minimizing the objective function given in Equation 8 un-
der the constraints specified in Equation 9 corresponds to solving a
generalized eigenvalue problem

XLX ′ �w = λXCX ′ �w. (9)

The linear project matrix W is formed from the eigenvectors asso-
ciated with dl smallest non-zero eigenvalues. Further discussion of
the LPP algorithm can be found in [10].
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3.2. Class based LPP for ASR tasks

The main issue associated with estimating the transformation ma-
trix, W , using the LPP method described in Section 3.1 for ASR
applications is estimating the N × N similarity matrix, S, defined
in Equation 5. For typical large vocabulary ASR tasks, it is not un-
usual for training utterances to consist of tens of millions of feature
frames. Furthermore, the input vectors, �xi, i = 1, . . . , N , are gen-
erally formed by concatenating multiple adjacent feature frames, re-
sulting in input vector dimension, dh, of well over 100. This makes
it impractical to compute and store the N2 similarity terms, si,j .

There are many ways to address this issue. In this work, the
similarity terms in Equation 5 were computed only for input feature
vectors that were labeled as belonging to the same class, p, of the
P classes defined in Section 2. The class label assigned to a given
input vector can be defined in many ways. These might include the
HMM state that the associated feature frame was assigned to, the
subword model associated with this state, or any number of other al-
ternatives. Suppose the complete set of input feature vectors, X , are

segmented into class specific subsets, Xp = {�x(p)
1 , �x

(p)
2 , . . . , �x

(p)
Np

},

so that X = {X1, X2, . . . , XP }. Restricting the computation of the
similarity terms to be between input vectors of the same class results
in a block diagonal similarity matrix,

S =

�
����

S1 0 . . . 0
0 S2 . . . 0
...

...
. . .

...
0 0 . . . SP

�
���� . (10)

Each Sp is an Np × Np dimension matrix whose elements corre-
spond to the similarity terms for input vectors labeled as belonging
to class p. Similarly, the matrices C and L in Equation 10 are also
block diagonal with class specific matrices, Cp and Lp, correspond-
ing to class p. Therefore, XLX ′ and XCX ′ in Equation 10 can be
computed from the class specific submatrices as

XCX ′ =

P�
p=1

XpCpXp
′

(11)

XLX ′ =

P�
p=1

XpLpXp
′. (12)

Both the storage and computational requirements for the block
diagonal similarity matrix in Equation 11 are far less than for the
general similarity matrix defined in Section 3.1. Furthermore, it is
worth noting that the optimization criterion used in LPP is strictly
based on preserving local relationships that exist among input data
vectors and does not incorporate any notion of class separability. It
is reasonable to argue that restricting the similarity measure given
in Equation 7 to be computed among data vectors that are nearest
neighbors within the same class may potentially improve the statisti-
cal robustness of the procedure. However, since evaluating the more
general assumption of class independent similarity was considered
to be intractable in this work, this issue has been left as an open
question.

4. EXPERIMENTS

This section describes an experimental study that was performed to
evaluate the ability of the feature space transformations obtained us-
ing locality preserving projections to reduce ASR word error rate

(WER) on the Resource Management (RM) task. LPP is applied to
the scenario described in Section 3, where multiple adjacent cep-
strum feature vectors are concatenated and a linear feature space
transformation is applied to reducing the dimensionality of the con-
catenated freatures. Performance of LPP based dimensionality re-
duction is compared with the well known LDA approach that was
descirbed in Section 2.

4.1. RM Task and Baseline ASR System

This section briefly describes the RM speech corpus and the baseline
ASR system that was configured for this task. The standard RM SI-
109 training set with 3990 utterances and 3.3 hours of speech spoken
by 109 speakers was used to train context dependent subword HMM
acoustic models. WER was evaluated on the standard DARPA test
sets which include Feb’89, Oct’89, Feb’91, and Sep’92. Each test
set consists of 300 utterances spoken by 10 speakers.

Feature analysis in the baseline MFCC based system includes
12 mel frequency cepstrum coefficients, normalized log energy, and
their first and second difference coefficients all concatenated to ob-
tain a 39-dimension feature vector. All HMM systems evaluated in
this section are based on subword models formed from left-to-right
3-state HMMs with 6 diagonal Gaussians per state. The standard
RM word-pair grammar is used as the language model for ASR.

4.2. Feature Space Transformations

The input vectors for all feature space transformations, implemented
using LPP or LDA approaches, consist of 5 to 11 concatenated MFCC
+Energy static feature vectors. This corresponds to an input dimen-
sion ranging from 65 to 143. The transformed vectors for all the
experiments described in this section are 39 dimensional.

There are two issues that affect the behavior of the data similar-
ity terms in Equation 7. The first is the definition of the K-nearest
neighbor region surrounding an input vector which is associated with
the indicator function, e(). A value of K = 100 is used for all of the
LPP experiments. The second issue is the choice of ρ in Equation 7.
Empirical estimation of ρ will be discussed below.

Finally, a class, p, for both the LDA and LPP feature transforma-
tions is defined to be a HMM state. There are P = 1562 clustered
states in the HMM system described above, and state labels are as-
signed to concatenated input vectors through Viterbi segmentation
with the baseline MFCC based HMM models.

Table 1 displays the WERs for the baseline MFCC-based sys-
tem and multiple systems implemented using LDA and LPP fea-
ture transformations evaluated on all four RM test sets. The input
data vectors for all LDA and LPP based systems in Table 1 con-
sist of 9 concatenated static feature vectors. Results are displayed
for the cases where LDA and LPP transformations are applied inde-
pendently and also for the cases where LDA and LPP transforma-
tions are followed by a maximum likelihood linear transformation
(MLLT) [14, 12]. MLLT is a well known technique for obtaining a
data projection that has the effect of the maximizing the likelihood
of the projected data under a diagonal covariance assumption.

It is clear from Table 1 that the relative performance of all trans-
formation techniques varies considerably across the different RM
test sets. It can also be seen that the average performance obtained
using the LPP transformation, displayed in column 6, represents a
relative improvement of 6.8% with respect to the average baseline
WER of 4.4%. After applying the MLLT transformation, the com-
bined LPP+MLLT transformation resulted in relative WER reduc-
tion of 16.1% relative to the baseline system and a 6.1% relative
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reduction in WER relative to the LDA+MLLT system.

Table 1. WER obtained on RM test sets using Ba seline MFCC fea-
tures, LDA features, and LPP features

Feature RM Test Set
Set Feb89 Oct89 Feb91 Sep92 Ave.

baseline 2.85 3.76 4.03 6.96 4.40

LDA 3.12 3.17 3.90 6.92 4.28

LDA+MLLT 2.73 3.32 3.34 6.33 3.93

LPP 3.16 3.73 3.34 6.14 4.10

LPP+MLLT 3.01 3.06 2.90 5.78 3.69

Figure 2 describes the effect of varying the number of concate-
nated static feature frames that are input to the LPP and LDA trans-
formations. The average WERs are displayed for the systems as the
number of concatenated frames are varied from 5 to 11. Figure 2
shows that the effect on WER observed when reducing the number
of concatenated input frames below nine frames is far less for LPP
than that for LDA.

Fig. 2. Average WER obtained using LPP and LDA transformations
on data vectors consisting of from 5 to 11 concatenated frames.

Table 2 describes the effect of varying the heat kernel factor ρ in
Equation 7. The average WERs are displayed for values of ρ ranging
from 1 to 1000 and for input data vectors consisting of 7 and 9 con-
catenated frames. It is clear from the table that the selection of ρ has
a significant effect on WER. This is especially true for the higher
dimensional input feature space. Currently, obtaining an optimum
value for ρ for a specific task must be done empirically.

Table 2. Average WER obtained using transformed features with
different ρ on the RM test set.

Frms.\ρ 1.0 2.0 5.0 1000.0

7 5.67 4.12 4.48 4.98

9 7.55 4.42 4.10 5.02

5. SUMMARY AND CONCLUSIONS

In this paper, a new manifold based dimensionality reduction algo-
rithm, LPP, was applied to feature extraction in ASR. LPP is fun-
damentally different from existing feature dimensionality reduction
approaches that have been applied to ASR. This is because it ex-
ploits the assumption that speech is embedded in a nonlinear man-
ifold space. The advantage of LPP with respect to other manifold
based methods is that it is applied in the form of a linear transfor-
mation matrix and can be easily employed to unseen data. A class

based LPP was implemented to handle the large amounts of train-
ing data in ASR, and huge memory and computation requirements
were avoided. Finally, in experiments performed on the RM corpus,
LPP has shown to provide a 16% reduction in WER with respect to
a baseline MFCC based ASR system.

6. REFERENCES

[1] K. Beulen and H. Ney, “Experiments with linear feature ex-
traction in speech recognition,” in European Conference on
Speech Communication and Technology, Madrid, Spain, 1995,
pp. 1415–1418.

[2] N. Kumar and A. G. Andreou, “Heteroscedastic discriminant
analysis and reduced rank hmms for improved speech recogni-
tion,” Speech Communication, vol. 26, pp. 283–297, 1998.

[3] J. W. Hung and L. S. Lee, “Optimization of temporal filters
for constructing robust features in speech recognition,” IEEE
Transactions on Audio, Speech and language Processing, vol.
14, no. 3, pp. 808 – 832, 2006.

[4] V. Jain and L. Saul, “Exploratory analysis and visualization
of speech and music by locally linear embedding,” in IEEE
Proceedings of International Conference on Acoustics, Speech,
and Signal Processing, 2004, pp. 984–987.

[5] A. Jansen and P. Niyogi, “Intrinsic fourier analysis on the
manifold of speech sounds,” in IEEE Proceedings of Interna-
tional Conference on Acoustics, Speech, and Signal Process-
ing, Toulouse, France, 2006, pp. 241–244.

[6] A. Errity and J. McKenna, “An investigation of manifold learn-
ing for speech analysis,” in Proceedings of the International
Conference on Spoken Language Processing, Pittsburgh, USA,
2006, pp. 2506–2509.

[7] J.B. Tenenbaum, V. de Silva, and J. C. Langford, “A global
geometric framework for nonlinear dimensionality reduction,”
Science, vol. 290, pp. 2319–2323, 2000.

[8] S.T. Roweis and L. K. Saul, “Nonlinear dimensionality re-
duction by locally linear embedding,” Science, vol. 290, pp.
2323–2326, 2000.

[9] M. Belkin and P. Niyogi, “Laplacian eigenmaps and spectral
techniques for embedding and clustering,” in Advances in Neu-
ral Information Processing Systems 14, 2001.

[10] X. He and P. Niyogi, “Locality preserving projections,” in
Advances in Neural Information Processing Systems 16, 2003.

[11] X. He, S. Yan, Y. Hu, P. Niyogi, and H. Zhang, “Face recog-
nition using laplacianfaces,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 27, no. 3, pp. 328–340,
2005.

[12] G. Saon, M. Padmanabhan, R. Gopinath, and S. Chen, “Max-
imum likelihood discriminant feature spaces,” in IEEE Pro-
ceedings of International Conference on Acoustics, Speech,
and Signal Processing, Istanbul, Turkey, 2000, pp. 1129–1132.

[13] P. Somervuo, B. Chen, and Q. Zhu, “Feature transformations
and combinations for improving ASR performance,” in Euro-
pean Conference on Speech Communication and Technology,
Geneva, Switzerland, 2003, pp. 477–480.

[14] R. Gopinath, “Maximum likelihood modeling with Gaussian
distributions for classification,” in IEEE Proceedings of Inter-
national Conference on Acoustics, Speech, and Signal Process-
ing, Seattle, USA, 1998, pp. 661–664.

1572


