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ABSTRACT

This paper investigates robustness to uncertain microphone place-
ments in an array beamformer front-end to a speech recognition sys-
tem. There are two general approaches to handling the placement
uncertainty: using the approximately known geometry in a robust
beamforming technique, or using techniques that require no prior
knowledge of geometry. Experiments in this paper compare the
robustness of different techniques for both of these approaches in
terms of speech recognition accuracy. To benefit from existing mi-
crophone array speech recognition data corpora for experimentation,
microphone placement uncertainty is simulated by introducing ran-
dom perturbations in the assumed geometry. Experimental results
show that robust beamforming yields stable performance to a certain
degree of placement error, but thereafter techniques such as auto-
matic calibration are beneficial.

Index Terms— Microphone Array, Speech Recognition

1. INTRODUCTION

Microphone array technologies have been used in a wide range of
applications such as teleconferencing, hearing aids, speaker local-
ization and tracking, and as the front-end of speech recognition sys-
tems. Most microphone array processing algorithms employ spatial
filtering, or beamforming, to capture the desired signal while min-
imising noise and interference.

With advances in sensor and sensor network technology,
multimedia-capable devices and ad-hoc computing networks are be-
coming ubiquitous. In this new context, there is potential for applica-
tions that employ ad-hoc networks of microphone-equipped devices
collaboratively as a virtual microphone array [1]. One example of
data collected using arrays with unknown geometry is that used in
the NIST rich transcription meeting recognition evaluation [2]. The
data contains recordings of natural meeting interactions captured
from a number of sites, each with their own microphone configu-
rations. These configurations are unknown to the evaluation partici-
pants who must use the recorded data to perform speech recognition
of the meetings. Unfortunately most traditional beamforming algo-
rithms are based on assumptions that the array is stationary and has
a known geometry. In the sensor network paradigm, these assump-
tions are inappropriate. Sensor locations are likely to be dynamic
and unknown a priori.

Motivated by a desire to progress from traditional microphone
arrays towards less constrained microphone networks, this paper in-
vestigates approaches that improve robustness of a microphone ar-
ray beamformer to erroneous microphone placement. Such errors or

uncertaintity occur when the position of microphones are estimated
using array shape calibration approaches.

A first approach to this problem aims to design beamformers that
are inherently insensitive to sub-optimal conditions and errors, rather
than correcting the errors themselves. This is usually achieved using
adaptive methods to estimate and minimise the noise and steering
vector uncertainties from the input signals [3, 4]. Theoretical sta-
tistical analysis on the signal-to-interference-plus-noise (SINR) ra-
tio performance of robust beamformers in the presence of random
steering vector errors has been thoroughly presented in the litera-
ture [5, 6]. While such analysis provides valuable insight into the
effectiveness and optimality of the beamformer, there is a need to
confirm the practical relevance of the analysis, for instance when the
beamformer is used as a front-end in speech recognition system. In
such cases, eventual speech recognition accuracy is a more pertinent
measure than the theoretical SINR.

A second approach is to consider that the geometry of the ar-
ray is completely unknown. In this case, beamforming can be done
by either direct estimation of the steering vector from the signals,
or by first employing blind calibration of microphone location. One
implementation of a direct estimation approach is blind beamformer
employed in the Multiple Distant Microphone (MDM) speech recog-
nition front-end for automatic meeting transcription reported by the
AMI (AugmentedMulti-party Interaction) project [7]. A solution for
calibrating an unknown array geometry using only background noise
statistics was proposed in [8], and was shown to give a reasonable
estimate of the array geometry in a diffuse noise environment. Us-
ing knowledge of the estimated array geometry in conjunction with
source localisation, the speakers position can be derived. Similarly
to the blind beamforming approach, this automatic calibration tech-
nique determines both the microphone and speaker locations from
the observed signals only, requiring no a-priori information about
the array geometry or speaker location.

This paper investigates methods for dealing with microphone
placement uncertainty in a microphone array front-end to a speech
recognition system. Speech recognition accuracy is measured while
varying the magnitude of random microphone placement errors. The
aims of the experiments are to quantify the effect placement uncer-
tainty has on speech recognition performance in general, and to iden-
tify promising approaches for improving system robustness to such
uncertainty. The paper is organised as follows. Section II overviews
the various techniques used in the experiments. Speech recognition
experiments are presented and discussed in Section III and IV, fol-
lowed by concluding remarks in Section V.
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2. BACKGROUND PROBLEM

2.1. Beamforming with Uncertain Array Geometry

The first method of dealing with uncertain array geometry is to use
a beamformer which is inherently robust to microphone placement,
or steering, errors.

Beamforming is an effective method of spatial filtering. It dif-
ferentiates desired signal from noise and interference based on its
location. Consider a desired signal received by N omnidirectional
microphones sampled at discrete time k, in which each microphone
output is an attenuated and delayed version of the desired signal
ans(k− τn) and noise vn given by xn = ans(k− τn) + vn(k). In
the frequency domain, the array signal model is X(ω) = S(ω)d +
V (ω), where d represents the array steering vector which depends
on the actual microphone and source location. In the near field, d is
given by [9]:

d = [a0e
−jωτ0 , a1e

−jωτ1 , ..., aN−1e
−jωτn ]T ,

an =
dref

dn

, τn =
dn − dref

c
,

where dn and dref denote the Euclidian distance between the source
and the microphone n, or the reference microphone, respectively. To
recover the desired signal, each microphone output is weighted by
frequency domain coefficients wn(ω) and the beamformer output
is the sum of N weighted microphone outputs given by Y (ω) =∑N

n=1
wH

n (ω)Xn(ω). The inverse Fourier transform results in time
domain output signal y(k).

2.1.1. Delay-Sum Beamforming

Delay-sum beamforming compensates for the signal delay to each
microphone output appropriately. After summing outputs, the de-
sired signal will be reinforce, while the noise signals will be effec-
tively reduced through destructive interference.

2.1.2. Optimum Beamforming

Optimum beamforming obtains filter weights according to a given
optimisation criterion. Using the minimum variance distortionless
criterion, the mean square of output noise power is minimised:

min
w

w
H
Rnw (1)

where Rn is the spatio-spectral covariance matrix of noise, subject
to distortionless constraint given by:

w
H
d = 1 (2)

The well know solution is usually termed the Minimum Variance
Distortionless Response (MVDR) weights, given by:

w
MVDR

=
R
−1

n d

dHR
−1
n d

(3)

To increase the robustness of MVDR in the presence of ar-
ray perturbation, quadratic constraint is applied to the beamforming
weights by adding weighted identity matrix to the spatio-spectral co-
variance matrix [10].

Superdirective beamforming is derived from MVDR by apply-
ing theoretically well defined noise fields, such as a diffuse noise
field. A diffuse noise field appears in several practical reverberant

environments, such as inside offices or cars. The coherence function
of a diffuse noise field can be modelled as:

Γij(f) = sinc

(
2πfdij

c

)
(4)

where dij is the distance between microphone i and j. This can be
used in place of the noise covariance matrix in the MVDR solution
to obtain the superdirective filter weights.

2.1.3. Robust Generalised Sidelobe Canceller

Optimum beamforming can be efficiently implemented using the
Generalised Sidelobe Canceller (GSC) structure. However in stan-
dard GSC, the presence of array perturbation causes error in the
steering vector, leading to target signal cancellation. To improve the
robustness of GSC, [4] proposed Robust GSC (RGSC) with a coef-
ficient constrained adaptive blocking matrix filter and a norm con-
strained adaptive noise canceller, to pick up the target signal with
minimum distortion in the presence of array perturbation. The Ro-
bust GSC can be efficiently implemented using a block frequency
domain method [11].

In a practical implementation of the RGSC, adaptation control is
needed to prevent target signal cancellation. To achieve this for ex-
periments in this paper, the adaptive noise canceller was adapted of-
fline using a segment of noise samples taken from the speech recog-
nition database, while the blocking matrix was adapted during noisy
speech signal period.

Standard RGSC uses delay-sum as the fixed beamformer com-
ponent. The experiments in this paper compare this (denoted
RGSC DS) to the use of a superdirective beamformer as the fixed
beamformer (RGSC SD), in order to improve array gain in diffuse
noise fields and increase the spatial selectivity in the low frequency
range.

2.2. Beamforming with Unknown Array Geometry

An alternative to robust beamforming from an approximately known
array geometry, is to beamform with no prior knowledge of the ar-
ray geometry. In this case, beamforming may be performed in one
of two ways: by direct estimation of the array steering vector d, or
by explicitly estimating the array geometry through automatic cali-
bration technique.

2.2.1. Beamforming from Estimated Propagation Vector

One beamformer that directly estimates the propagation vector is the
blind beamformer employed by the AMI-MDM system [7]. The
system first measures the energy of each microphone signal output,
and selects the highest energy microphone as reference for Time-
Delay-on-Arrival (TDOA) estimation. The attenuation factor which
corresponds to the ratio of energies between each channel and the
reference channel is also calculated. The TDOA delay between each
microphone and a reference microphone is determined by finding the
peak of generalised cross correlation function [12]. From these, the
array steering vector d is constructed, and the beamforming weights
calculated.

2.2.2. Beamforming from Blindly Derived Positions

First, microphone positions are revealed using technique proposed
in [8]. It assumes no prior knowledge of microphone placement,
using only background noise statistics to achieve shape calibration.
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Fig. 1. Word Error Rate versus Microphone Placement Error for various robust beamforming approaches.

The technique works by fitting the theoretical diffuse noise coher-
ence function (Eq. 4) to the measured noise coherence to obtain the
distance between microphone pairs.

Given these distances, classical multidimensional scaling is per-
formed to estimate the array geometry. Having derived microphone
positions automatically, location of the source can then be estimated
using source localisation algorithms in relative to revealed positions.
Steered Power Response Phase Transform weighted (SRP-PHAT) is
chosen in this work due to its robustness in reverberant environment
[13].

3. EXPERIMENTS

Speech recognition experiments were conducted on the single
speaker (S1) portion of the Multichannel Overlapping Numbers Cor-
pus (MONC) [14]1. The MONC contains digit utterances spoken
around a circular meeting room table and captured by a fixed 8-
element, equally spaced, table-top circular microphone array. The
noise conditions in the recording was predominantly diffuse back-
ground noise.

The clean MONC S1 training data set was used to train base-
line Hidden Markov Models (HMM) with standard Mel-Frequency
Cepstral Coefficient (MFCC) parameters (including 0th cepstral co-
efficient) and their first and second derivatives. The baseline system
achieves a word error rate (WER) of 4.37% on the test set. In the
following experiments, MLLR followed by MAP adaptation of the
models is performed for each technique using the MONC develop-
ment set. The WER for each robust beamformer using ground truth
microphone placements is given in Table 1.

In this article, in order to investigate the effect of uncertain mi-
crophone placement on beamforming accuracy only, the following
experiments all assume a known speaker location. This allows us
to ignore effects of microphone placement uncertainty on automatic
speaker localisation in the current study. Clearly this is unlikely in a
practical system with uncertain microphone locations, however, and
the use of speaker localisation forms the focus of our ongoing re-
search.

To simulate the placement uncertainty for the robust beamform-
ing experiments, the true microphone locations were perturbed with
random angle for a specified radius r. The radius of error was in-
creased step by step, initially with 0.2 cm increment from the actual

1Available from http://www.cslu.ogi.edu/corpora/

Table 1. Speech recognition performance of robust beamforming
techniques using ground-truth microphone positions.

Techniques WER (%)
Superdirective 6.47%
Delay-Sum 7.86%
MVDR 6.62%
RGSC SD 6.47%
RGSC DS 6.97%

microphone positions up to 2 cm, followed by 0.5 cm increments
from 2 cm to 5 cm. Due to randomisation, results are averaged over
15 experiments for each increment of error. The mean WER results
are plotted against placement error in Figure 1.

Results comparing the different approaches from unknown ge-
ometry are presented in Table 2 for delay-sum, MVDR and superdi-
rective beamformers. As the superdirective technique requires inter-
microphone distances to calculate the noise coherence matrix, this
could not be implemented for the AMI-MDM approach, however in
automatic calibration approach, the technique uses inter-microphone
distances from estimated array geometry. Calibration results are av-
eraged over 15 runs using different noise segments in the calibration
procedure. The table also gives the intersection point with Figure 1,
indicating the degree of microphone placement uncertainty at which
the AMI-MDM or automatically calibrated array performance be-
comes better than the robust beamformer alone.

4. DISCUSSION

At true microphone positions as presented in Table 1, superdirec-
tive and RGSC SD achieve the lowest WER among all techniques,
as the MONC database was recorded in approximately diffuse noise
conditions (i.e. a moderately reverberant room with no significant
localised noise sources). MVDR gives similar performance, albeit
slightly degraded due to filter initialisation on real noise samples.
RGSC DS shows significant reduction of WER compare to the stan-
dard delay and sum beamforming techniques due to the adaptive
noise cancelling structure.

In the presence of small array perturbations, for radius error
from 0.2 cm to 2 cm, all beamforming techniques exhibit relatively
stable performance. This indicates a certain degree of robustness in
the presence of array mismatch. The performance is stable for such
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Table 2. Speech recognition performance of beamformers from unknown array geometry. Mean and standard deviation over 15 runs are
given for automatic calibration technique. Intersection indicates placement error for equivalent performance in Figure 1.

Techniques Word Error Rate WER(%) Intersection (cm)
AMI-MDM Delay-Sum 8.88% 4.09
AMI-MDMMVDR 6.88% 3.24

Mean WER(%) Std. WER(%)
AutoCal.+Delay-Sum 8.04% 0.09% 1.9
AutoCal.+Superdirective 6.62% 0.09% 2.33
AutoCal.+MVDR 6.63% 0.05% 1.4

small errors even for delay-sum beamforming, indicating that the
robustness at this level is an inherent characteristic of the array and
speaker configuration, rather than being due to any explicitly robust
beamforming techniques.

As the radius of error increases, the speech recognition accuracy
for all beamforming techniques begins to decline. In relative terms,
most techniques degrade at a similar rate, apart from the MVDR and
RGSC SD approaches. The MVDR approach shows the greatest ro-
bustness to erroneous microphone placement. While RGSC SD per-
forms significantly better than RGSC DS for small placement errors,
it degrades more rapidly as the error increases. This can likely be
attributed to the additional errors in the inter-microphone distances
used in the noise coherence matrix, compounding the effect of the
steering errors.

The results using a completely unknown array geometry in Ta-
ble 2, show that the AMI-MDM achieve higher WER compared
to automatic calibration. This is might be caused by inacurracy in
TDOA delay calculations. Automatic calibration techniques in the
other hand achieveWER comparable to a systemwith approximately
2cm of uncertainty in the microphone placements. In both cases, the
MVDR beamformer yields significantly better performance than the
delay-sum beamformer, due to its greater robustness to error seen in
Figure 1.

The good performance of automatic calibration techniques
might be due to the closer integration between microphone and
source position estimations, in which speaker position is estimated
from calibrated microphone positions. The estimated position of the
speaker may compensate errors in microphone positions which re-
quire further investigation in the approach.

5. CONCLUSION

This paper has examined the effect of uncertain geometry on the ac-
curacy of a microphone array speech recognition system. Robust
beamforming approaches are compared, as well as two techniques
that require no prior geometry information. For the investigated con-
figuration, results show the beamformers are robust up to 2cm of mi-
crophone placement error. When uncertainty exceeds this, it is better
to estimate the required delay or geometry information directly from
observed signals.
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