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ABSTRACT
This paper shows a method for the modeling of speech signal
distributions based on Dirichlet Process Mixtures (DPM) and
the estimation of noise sequences based on particle filtering.
In real situations, the speech recognition rate degrades miser-
ably because of the effect of environmental noises, reflected
waves and so on. To improve the speech recognition rate, a
technique for the estimation of noise sequences is necessary.
In this paper, the distribution of the clean speech is modeled
using the DPM instead of the traditional model, which is a
Gaussian Mixture Model (GMM). Speech signal sequences
are generated according to the mean and covariance generated
from the DPM. Then, noise signal sequences are estimated
with a particle filter. The proposed method using Extended
Kalman Filter (EKF) can improve the speech recognition rate
significantly in the low SNR region. Applying Unscented
Kalman Filter (UKF), better results can be obtained in also
the high SNR.

Index Terms— Kalman filtering, Signal processing, Speech
enhancement, Speech recognition, Stochastic processes

1. INTRODUCTION

This paper proposes a technique for the estimation of noise
and speech sequences without developing the GMM. Instead
of the GMM, the speech distribution is modeled using a DPM
[2]. The Dirichlet Process (DP) [3] is a non-parametric prob-
ability distribution over the space of all possible distributions.
The DP is used as the prior of the DPM. The DP can be
considered as the probability distribution for the probability
distribution of mixture components. The DP is a generative
model for infinite distribution. So, DPM allows us to mix the
infinite probability distribution. By using DPM in the estima-
tion process of the clean speech distribution, it is expected to
estimate this distribution more flexibly.
There are several researches on the nonparametric den-

sity estimation using DPM [4], [5]. Caron et al. [6] applied
the DPM to the density estimation in the context of dynamic
models. Caron et al. can achieve the improvement of the

performance of standard algorithms when the noise pdfs are
unknown. Hence, in case where the clean speech distribu-
tions are unknown, we also expect to get better result than the
standard algorithms.
This paper is organized in the following four sections: the

section 2 describes the proposed method, the section 3 shows
the evaluation of the proposed method on the speech recogni-
tion and the section 4 concludes this paper.

2. PROPOSED METHOD

We propose the modeling of the clean speech using DPM in-
stead of GMM. By introducing DPM, we expect more flexible
estimation of clean speech. Because DPM allows us to mix
infinite probability distribution. Moreover, DPM can adapt
automatically the number of gaussian laws needed. If we want
to mix other laws than gaussian, it is also possible.

2.1. Dynamic model for the proposed method

We, as well as Fujimoto et al., employed the dynamic model
proposed by Segura et al. for each particle as follows [7]:

xt = st + log(1 + exp(nt − st)) + vt (1)
nt = nt−1 + wt−1 (2)
vt ∼ N (0, Σs),wt ∼ N (0, Σw )

where, t is a frame index, xt is a observed signal, st is a clean
speech, nt is a noise signal, N (·) is a gaussian distribution,
vt and wt are independent.

2.2. Dirichlet Processes

Ferguson et al. [3] defined two properties for the adequate a
priori distribution.

1. The support of the prior distribution should be large.

2. Posterior distribution given a sample of observation from
the true probability distribution should be manageable
analytically.
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In [3], the authors introduced the DP as a probability mea-
sure on the space of probability measures, which satisfies the
above properties.
Many probability distributions can be obtained using urn

models. The urn model that corresponds to the Dirichlet dis-
tribution is the Polya urn model [8]. Here, a probability dis-
tribution G is drawn from DP (G0, α) where a probability
measure G0 is defined on a measurable space (Ω,A), α is a
positive real number called scale factor. Let θt be a random
sample from G. Blackwell et al. [8] showed that the predic-
tive distribution is given by the Polya urn model as follows

θt+1|θt ∼ α

α + t
G0 +

1
α + t

Σt
j=1δ(θ − θj).

where δ(·) is the delac delta function.

2.3. Dirichlet Process Mixture

It is possible to reformulate the density estimation problem
using the following hierarchical model known as DPM [6]:

G ∼ DP (G0, α), θt ∼ G, st ∼ f(·|θt) (3)

where the RPM (Random Probability Measure) G is the mix-
ture distribution distributed according toDP (G0, α). The la-
tent variables θt are distributed according to G. f(·|θt) is
a mixed probability density function. The following flexi-
ble model is adopted for the unknown distribution F (s) =∫
Θ

f(s|θ)dG(θ) with θ ∈ Θ.

2.4. Estimation of speech signal distribution with the Dirich-
let process mixture

In the bayesian framework, our problem of estimating a noise
sequence and a clean speech sequence, is equivalent to the
determination of the probability p(n0:t, s1:t|x1:t). A clean
speech st is supposed to be distributed according to a DPM of
base mixed distributionN (μt , Σt) and scale parameter α [6].
Instead of developing an accurate GMM, we introduce the
estimation of clean speech signal distribution with the DPM
which will adapt automatically the number of Gaussian laws
to use for the modeling of the clean speech. The problem is
now to determine the probability p(n0:t, θ1:t | x1:t), decom-
posed as p(n0:t, θ1:t | x1:t) = p(n0:t | θ1:t, x1:t)p(θ1:t | x1:t)
where, θt consists of the mean vector μt and covariance ma-
trixΣt of clean speech signal. θt and a clean speech are drawn
from the hierarchical model shown in eq. (3).

G0 denotes a Normal-inverse Wishart distribution which
is usually used when θt are a mean μ and a covariance Σ of
gaussian law: G0 = NIW(μ0, κ0, ν0, Λ0)with μ0, κ0, ν0, Λ0

the hyperparameters of the Normal-inverse Wishart [9].
As p(n0:t | θ1:t, x1:t) can be computed using the EKF de-

fined by Fujimoto et al. [1] as well as the UKF, we only need
to estimate p(θ1:t | x1:t) using a particle method. At time t,

it follows that p(nt, θ1:t | x1:t) is approximated through a set
of J particles by the following empirical distribution

PN (nt, θ1:t | x1:t) = ΣJ
j=1ω̃

(j)
t p(nt | θ

(j)
1:t , x1:t)

with p(nt | θ
(j)
1:t , x1:t) � N (n̂t|t(θ

(j )
1:t ), Σ

(j )
nt|t (θ

(j )
1:t )). The pa-

rameters n̂t|t(θ
(j)
1:t ) and Σ(j)

nt|t(θ
(j)
1:t ) are computed recursively

for each particle j using the EKF. The posterior p(θ(j)
1:t | x1:t)

is proportional to p(θ(j)
1:t−1 | x1:t−1) as follows:

p(θ(j)
1:t | x1:t)

∝ p(θ(j)
1:t−1 | x1:t−1)p(xt | θ

(j)
1:t , x1:t−1)p(θ(j)

t | θ
(j)
1:t−1)

where

p(xt | θ
(j)
1:t , x1:t−1) = p(xt | θ

(j)
t , θ

(j)
1:t−1, x1:t−1)

= N (x̂t(θ
(j )
1:t ), Σ̂x (θ(j )

1:t ))

and

x̂t(θ
(j)
1:t ) = s

(j)
t + log(I + exp(n(j)

t − s
(j)
t ))

Σ̂x(θ(j)
1:t ) = G

(j)
t Σ(j)

nt
G

(j)T
t + Σs,t

G
(j)
t =

∂

∂n
(j)
t

{
s
(j)
t + log(1 + exp(n(j)

t − s
(j)
t ))

}

s
(j)
t ∼ N (μ(j )

t ,Σ(j )
t )

Finally, sample weights are calculated using these estimates.

ω̃
(j)
t ∝ ω

(j)
t−1N (x̂t(θ

(j )
1:t ), Σ̂x (θ(j )

1:t ))

because we chose the importance distribution as follows:

q(θt|θ(j)
1:t−1, x1:t) = p(θt|θ(j)

1:t−1).

p(θ(j)
t | θ

(j)
t−1) is determined using the polya urn representa-

tion [6].

2.5. Detection of speech/non-speech frame

In the high SNR region, there was the possibility that the
noise tracking performance by the proposed method degrade
[10]. In this paper, we introduce detection of speech/non-
speech frame into the proposed method. Detection is per-
formed based on the distance defined as follows:

dst = (xt − (ŝt + log(1 + exp(n̂t − ŝt))))2

dnt = (xt − n̂t)2

Δdt = dst − dnt

where ŝt and n̂t are the estimated clean speech and noise sig-
nal. If Δdt is larger than a threshold obtained from the aver-
age of Δdt over first 5 frames 1, the current frame is consid-
ered as the speech frame and modified as follows:

ŝt = ŝt + ξs

√
dst , n̂t = n̂t − ξn

√
dst

1We assume first 5 frames are the noise frames.
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where ξs and ξn are determined by the wiener coefficient. In
the reverse case, the signs of above equations are inverted.
The proposed method can finally be represented as the

following algorithm.

j = 1, · · · , J

n
(j)
0 ∼ N (μN ,ΣN ) ω

(j)
t = 1

J
end
t = 1, · · · , T
calculate μ0, Λ0

j = 1, · · · , J

if t == 1 θ
(j)
t ∼ NIW(μ0, κ0, ν0, Λ0)

else θ
(j)
t ∼ p(θ(j)

t |θ(j)
t−1)

end
s
(j)
t ∼ N (μ(j )

t , Σ(j )
t ) θ

(j)
t = {μ(j)

t , Σ(j)
t }

switching dynamical system [1]
[x̂t(θ

(j)
1:t ), Σ̂x(θ(j)

1:t ), n
(j)
t ,Σ(j)

nt ]
= EKF (n(j)

t−1,Σ
(j)
nt−1 , θ

(j)
t , xt)

calculate sample weights
ω̃

(j)
t ∝ ω

(j)
t−1N (x̂t(θ

(j )
1:t ), Σ̂x (θ(j )

1:t ))
end
ΣJ

j=1ω̃
(j)
t = 1

Compute Neff =
{∑J

j=1

(
ω̃

(j)
t

)2
}−1

if Neff ≤ η, resample the particles and ω
(j)
t = 1

J

n̂t = ΣJ
j=1ω

(j)
t n

(j)
t ŝt = ΣJ

j=1ω
(j)
t s

(j)
t

Detection of speech/non-speech frame
end

3. SIMULATIONS

3.1. Simulation Setup

We compare three processing schemes: first one is a method
proposed by Fujimoto et al. [1] where Vector Taylor Series
(VTS) method and MMSE are not employed (conventional) 2,
second one is the proposed method using EKF and third one
is the proposed method using UKF. 3 Two types of data set are
made for evaluations. First one is clean speeches recorded in
a sound proof chamber, second one is noisy speeches which
are artificially generated by adding 3 types of noises. Noise
data are taken from “Sound Scene Database in Real Acousti-
cal Environment” [11]. We employ white noise, particle noise
and shaver noise. Then, these noises are artificially added to
clean speeches with SNRs from 0 to 9dB. 100 utterances ut-
tered by 4 males and 2 females are used for this evaluation.
The contents of the utterances are TV controlling commands,
e.g. “volume up”, “turn off” and so on. The total number of
evaluation data for each SNR is 3,600 short phrases.

2These processings require large processing costs, so we estimted the
clean speech as ŝt = ΣJ

j=1ω
(j)
t s

(j)
t after the particle filtering step.

3We compared the proposed method with the Spectral Subtraction
method. We cannot obtain the improvement of the speech recognition rate.

GMM with 256 mixture distributions is trained using 500
utterances uttered by 3 males and 2 females.
An acoustic model for speech recognition is developed us-

ing the Acoustical Society of Japan (ASJ) continuous speech
corpus [12]. The feature parameters for the acoustic model is
composed of 39Mel Frequency Cepstral Coefficients (MFCCs)
with 13 MFCCs (with zero-th MFCC) and their first and sec-
ond order derivatives. At the feature extraction step, Cepstral
Mean Subtraction (CMS) is applied to each sentence.
Parameters for the particle filtering is as follows: wt is

set to Σw = 0.1, ut is set to Σu = 0.0001 and zt is set to
Σz = 1. The number of particles is 100. Parameters for the
Polyak averaging and feedback have four states respectively,
e.g. αp = {0.05, 0.1, 0.15, 0.2}, βp = {0.5, 1.0.1.5, 2.0} and
Tp = {5, 10, 15, 20}. Moreover, a parameter for the switch-
ing dynamical system is γ = 0.5 [1]. μN and ΣN are calcu-
lated from the first 5 obserbed samples.
The parameter α for DPM is set to larger value than the

length of utterance T . 4

We have no a priori information on the speech signal dis-
tribution. The hyperparameters being not known a priori,
a simple estimation process is introduced. This estimation
bases on the difference between the received signal and the
received signal estimated using the estimated clean signal at
t − 1 and the estimated noise signal at t. That is to say, at the
time t, the clean signal is estimated roughly as follows:

s̃
(j)
t = s

(j)
t−1 + Δs(j) + z

(j)
t (4)

Δs
(j)
t = xt − (s̄(j)

t−1 + log(1 + exp(n̄(j)
t − s̄

(j)
t−1)))

where n̄
(j)
t is obtained from the Polyak averaging [1], s̄(j)

t is
obtained from the average over the 5 past frames and z

(j)
t−1 ∼

N (0, Σz ). Δs(j) is determined from the past errors and the
effect of the past error decays according to the exponential
function. Then, the mean vector and covariance matrix of s̃(j)

t

over all particles are calculated and we regard these values as
μ0 and Λ0 of hyperparameters. Then κ0 = 1 and ν0 = 500
are used for this simulation.

3.2. Results

Firstly, the noise and clean speech estimation results are shown.
Figure 1 shows one example of the noise and speech tracking
results by the proposed method using UKF. The abscissa is
the number of frame and the ordinate is the average energy of
filter bank output in the log spectral domain. The proposed
method can track the noise sequence in case SNR is 9dB.
Secondly, the speech recognition rates are compared. Eval-

uations are performed using speech recognition decoder “Ju-
lian” [13]. Clean speeches are recorded in a sound proof
chamber using a close contact microphone. Table 1 shows

4We have decided the parameter α from the preliminary evaluation.
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Table 1. Speech Recognition Rate for Noisy Data (%)
white shaver particle

no processing EKF UKF GMM no processing EKF UKF GMM no processing EKF UKF GMM
0dB 3.0 20.5 16.2 3.0 8.3 31.3 29.7 7.0 7.8 27.0 23.0 10.2
3dB 16.5 54.0 49.5 11.2 37.5 55.2 56.7 17.0 30.8 50.2 48.0 21.8
6dB 51.7 76.8 76.5 33.0 64.8 69.8 74.5 37.7 62.8 67.7 68.3 39.0
9dB 80.2 87.3 87.8 52.8 81.5 78.7 83.0 52.2 85.0 81.7 82.5 53.5

Fig. 1. Tracking result of the proposed method using UKF
(in case where a noise signal is a particle noise and SNR is
9dB) ∗: received (observed) signal, ♦: true noise signal, ×:
estimated noise signal, +: estimated clean signal

speech recognition rates. In this table, the speech recogni-
tion rate for three types of noise data (white noise, shaver
noise, particle noise) are shown. Moreover, for each noise
data, there are the speech recognition rates of four processing
schemes (no processing, proposed method using EKF, UKF
and conventional method using GMM). From this table, it can
be found that speech recognition rates are improved using the
proposed method using EKF in case the SNRs are 0, 3 and
6dB. Applying UKF, we can get better results than those of
EKF in case of high SNR.
The speech recognition rate by the conventional method

is lower than even that with no processing. The reason is that
the time allocated to the GMM learning is not enough long. 5

4. CONCLUSION

In this paper, we proposed a method for modeling the clean
speech distribution using DPM and noise sequence using par-
ticle filtering. Our proposed method realizes better noise esti-
mation accuracy than the method using inaccurate GMM. In
the evaluation using speech recognition, our proposed method

5Although this is one reason, we obtained better speech recognition rate
by employing the conventional method with VTS and MMSE on the limited
data set. The required processing time became 10 times more than that of the
convential method without VTS and MMSE.

can improve the speech recognition rate in the SNRs 0dB,
3dB, 6dB and 9dB except for the particle noise.
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