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ABSTRACT

Explicit tone modeling has been widely discussed in recent
Mandarin speech recognition research. In this paper, a dis-
criminative method of incorporating explicitly trained tone
models into lattice based rescoring is proposed. The method
is to use discriminative trained model weights to scale the
acoustic model and tone model distributions. The weights
are trained by the Minimum Phone Error using the Extended
Baum Welch algorithm. To take into account different pho-
netic contexts, various model weighting schemes are evalu-
ated. A smoothing technique is introduced to make model
weight training more robust to over tting. The proposed
method is evaluated on tonal syllable output speech recogni-
tion tasks on a Mandarin LVCSR database. Results show the
proposedmethod has achieved signi cant error reduction than
traditional global weight approach. Comparison with the tra-
ditional embedded tone modeling is also made, which shows
the importance of the proposed method when explicit tone
modeling approach is applied.

Index Terms— explicit tone model incorporation, mini-
mum phone error, discriminative training, Mandarin speech
recognition.

1. INTRODUCTION

Tone plays an important role in reducing ambiguity in Man-
darin speech recognition. Utilization of tone information has
proved to be successful in improving accuracy in large vo-
cabulary speech recognition (LVCSR). Most state-of-the-art
Mandarin speech recognition systems adopt embedded tone
modeling approach, where the F0-related tonal features are
appended into one single stream with the traditional spec-
tral feature (Mel Frequency Cepstral Coef cient, MFCC/ Per-
ceptual Linear Prediction, PLP) for training and recognition,
as has been done in [1]. Explicit tone modeling is to build
tone classi er separately and add tone scores from the clas-
si er in lattice rescoring. Explicit tone modeling can exploit
supra-segmental nature of the tones or use better tone classi-
er, which can lead to better recognition performance than the

embedded approach, as shown in [2]. Some work adopted a
hybrid framework, i.e., generate lattices by using the embed-

ded approach and then use improved tone models to obtain
further improvement [3].

Therefore, the two major tasks for explicit tone modeling
are to build a tone classi er for better discriminating the tones
and integrate tone scores from the classi er into LVCSR to
improve the performance of continuous speech recognition.
For the rst task, many explicit tone modeling techniques
have been studied in last two decades. In recent works, sev-
eral tone models have been reported, including the overlapped
ditone Gaussian mixture model [4], the decision tree based
tone model with polynomial regression coef cient features
[5], and support vector machines [6]. All have shown sig-
ni cant tone recognition improvement by taking advantages
of supra-segmental nature of the tones.

After the explicitly trained tone models are obtained, how
to nd an optimal integration of the tone models into sec-
ond pass rescoring is another important issue for tone problem
solving in Mandarin speech recognition. Traditional approach
is to use global acoustic score weight and tone score weight
(commonly obtained by heuristics or a grid search process)
to scale the probabilities, which might not lead to the best re-
sult. This is because the acoustic model and tone models are
independently trained and need a better interpolation. On the
other hand, the global weight could not take into account the
local phonetic/semantic scenario, such as what exact a phone
or word has been uttered. In [7], the word level prosody
model was proposed which is capable of grasping tone ar-
ticulation variation within a word. In this paper, we propose
discriminative model weight training (DMWT) for obtaining
better model dependent weights to scale the acoustic scores
and tone scores. The weights are trained using the Extend
Baum-Welch (EBW) algorithm by the recently popular Min-
imum Phone Error (MPE) criterion [8, 9]. We evaluated sev-
eral model weighting schemes: tonal syllable dependent, nal
model dependent, and model combination dependent. In [7],
the less frequent words, tonal syllable-dependent tone model
or plain tone models are used as back off. We propose a sim-
ilar technique: smoothing between the weights derived from
different weighting schemes is adopted to eliminate overtrain-
ing. The tonal syllable output speech recognition tasks are
performed to evaluate DMWT. Experiments show a 3.3% er-
ror reduction (9.5% relative) has been achieved by DMWT
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Fig. 1. scheme of DMWT model combination

than that with global model weight integration scheme. It
is also shown DMWT helps gain further improvement to the
embedded tone modeling approach.

The remainder of this paper is organized as follows: In
Section 2, tone model incorporation framework in lattice
rescoring is described. The weight combination scheme is
described. Section 3 gives an overview of the MPE objection
function and the weight updating equation using EBW is de-
rived. Section 4 presents the experimental results. Finally in
section 5 the conclusions drawn from the work are given.

2. TONE MODEL INCORPORATION FRAMEWORK
FOR LATTICE RESCORING

2.1. Tone model incorporation
The total score for an arc in the lattice is computed based on
scores from the parallel models:

ψ(q) =
∑I

i ηiψi(q)
= ηAαψAM (q) + ηT βψTM (q) + ψLM(q) + ψWP

(1)

where ψ(q) is the score from the ith parallel model. ψAM (q)
is the acoustic model (AM) score and ψTM(q) is the tone
model (TM) score. ψLM is the language model score and
ψWP is the word penalty. α and β are respectively the global
factor for the acoustic and tone scores and are selected em-
pirically. ηA and ηT are respectively the acoustic and tone
probability weight which are to be trained. We denote η =
(ηA, ηT ) as a model weight pair, where ηA > 0, ηT > 0 and
ηA + ηT = 1 are assumed.

2.2. Acoustic modeling for Mandarin speech recognition
and weight combination scheme
Fig.1 demonstrates the triphone based modeling structure of
a multi-character Chinese word/sentence (silence is assumed
at both the beginning and the end). As shown, each charac-
ter in the word can be pronounced as a tonal syllable. And
each tonal syllable can be divided into two parts: initial (I)
and nal (F). Each part can be modeled by a triphone (initial
triphone or nal triphone), according to its context. Hence,
we evaluated the following weighting schemes:

• Tone syllable dependent (DMWT TSD): Associate a unique
model weight pair with each tonal syllable. DMWT TSD
considers the initial and nal type of the syllable;

• Final model dependent (DMWT FMD): Associate a unique
model weight pair with each nal triphone. This scheme
takes into account the initial type of the following syllable;

• Model combination dependent (DMWT MCD): Associate
a unique weight pair with each different initial- nal tri-
phone combination. The scheme is capable of taking into
account the nal type of the preceding syllable.

3. DISCRIMINATIVE MODEL WEIGHT TRAINING

3.1. MPE objective function

The model weights are trained according to the MPE objec-
tive function. Given a training set of acoustic observation
sequences O = {O1, ...,Or, ...,OR}, the MPE criterion is
to minimize the average phone error of the observation se-
quences [8, 9]:

FMPE =
R∑

r

∑
s∈S P(Or|s)κP (s)κAcc(s, sr)∑

s′∈S P(Or|s′)κP (s′)κ
(2)

where P (Or|s) is the acoustic score for sentence s and P (s)
is the language model. κ is a scaling factor for reducing dy-
namic range for acoustic scores. Acc(s, sr) is the raw phone
accuracy for hypothesis s and can be calculated in terms of
the sum of the accuracy of each arc contained in s. More
details of MPE training can be found in [8, 9].

3.2. Extended Baum Welch model weight optimization

When the model weights are to be trained, the MPE objective
maximization is accomplished with the EBW algorithm [10]
when satisfying the positive and sum-to-one conditions:

η′
m,i =

ηm,i (∂FMPE/∂ηm,i|η + C)∑
i

ηm,i (∂FMPE/∂ηm,i|η + C)
, (3)

where ηm,i and η′
m,i are respectively current and newly es-

timated weights for the ith model score in pair m. C is a
constant used to ensure positive probability weight. The dif-
ferential of FMPE w.r.t certain model weight ηm,i needs to
be computed. According to the chain rule:

∂FMPE

∂ηi,m
=

∂FMPE

∂ψ(q)
∂ψ(q)
∂ηi,m

. (4)

The rst item is can be computed by [9]:

∂FMPE/∂ψ(q) = κγMPE
q , (5)

where γMPE
q = γq (c(q) − cavg). γq is the posterior proba-

bility of passing arc q. c(q) is the average phone accuracy for
all the sentence hypothesis that contains arc q and cavg is the
average accuracy of all the hypothesis in the lattice. More de-
tails about computation of these statistics can be found in [8,
9]. The second item in Eqn. (4) is computed by:

∂ψ(q)/∂ηi = ψi(q), (6)
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AM TM Weight TSER (%) ERR (%)

MSR N – 48.7 –
MSR Y global 41.3 15.1
MPE N – 40.9 16.0
MPE Y global 34.8 28.5

MPE Y TSD 34.1 30.0
MPE Y FMD 32.9 32.4
MPE Y MCD 32.5 33.2
MPE Y smoothing 31.5 35.3

Table 1. Recognition results for tonal syllable output tasks

Iter. E=150 E=200 E=250 E=300

0 34.8 34.8 34.8 34.8
1 34.2 34.3 34.5 34.5
2 34.2 34.1 34.4 34.4
3 34.3 34.1 34.1 34.3
4 34.4 34.2 34.1 34.3

(a) DMWT TSD

Iter. E=150 E=200 E=250 E=300

0 34.8 34.8 34.8 34.8
1 33.4 33.6 33.6 33.7
2 33.1 33.1 33.1 33.1
3 33.1 32.9 32.9 32.9
4 33.1 33.1 33.0 32.9

(b) DMWT FMD

Iter. E=150 E=200 E=250 E=300

0 34.8 34.8 34.8 34.8
1 32.7 33.0 33.2 34.4
2 32.8 32.7 32.5 32.6
3 33.1 32.7 32.5 32.5
4 33.3 33.0 32.5 32.6

(c) DMWT MCD

Table 2. TSER with different weighting scheme

which is the score from the ith parallel model. Then the iter-
ative updating function for DMWT can be written as:

η′
m,i =

κγMPE
q ηm,iψi(q)|η + Cηm,i∑

i

(
κγMPE

q ηm,iψi(q)|η + Cηm,i

) . (7)

4. EXPERIMENTS AND RESULTS

4.1. Database and con gurations

The experiments are performed on a Mandarin LVCSR
database. The corpus from Microsoft Research Asia [11]
is used for training, which contains read speech of 31.5 hours
from 100 male students, for a total 19 688 utterances and
454 291 tonal syllables. In the testing phase, the test uses

Iter. E=150 E=200 E=250 E=300

0 0.433 0.433 0.433 0.433
1 0.427 0.428 0.428 0.429
2 0.424 0.424 0.426 0.427
3 0.421 0.423 0.424 0.425
4 0.420 0.422 0.423 0.423

(a) DMWT TSD

Iter. E=150 E=200 E=250 E=300

0 0.433 0.433 0.433 0.433
1 0.413 0.416 0.418 0.420
2 0.400 0.405 0.408 0.411
3 0.392 0.397 0.401 0.404
4 0.387 0.392 0.396 0.399

(b) DMWT FMD

Iter. E=150 E=200 E=250 E=300

0 0.433 0.433 0.433 0.433
1 0.375 0.386 0.393 0.399
2 0.343 0.356 0.366 0.376
3 0.324 0.336 0.346 0.355
4 0.312 0.322 0.331 0.341

(c) DMWT MCD

Table 3. Expected error rates for DMWT iterations

additional 0.74 hour 500 utterances (9 570 syllables) from
another 25 male speakers. Speech waveforms are sampled
at 16bit and 16 kHz. Each frame of the acoustic front-end
is represented by a 39 dimensional vector, consisting of 12
MFCCs and normalized log energy and their delta and accel-
eration. Our tone model is based on the hidden conditional
random elds [12], which has shown a slight tone error rate
(TER) reduction than EBW trained HMMs, when using the
same structure and observations (including normalized F0

and ΔF0, the normalized log energy and its rst and sec-
ond derivative). TER on the test data is 28.7%. Conditional
probabilities are used as tone scores in Eqn. (1).

4.2. Experimental results

The proposed DMWT is evaluated on tonal syllable output
speech recognition task provided by the MSR toolbox in
[11]. Because we focus on the acoustics, no language model
is used. As mentioned in [5], measuring the tonal syllable
recognition performance is a good evaluation of the acoustic
model resolution of a recognizer, because it is done purely at
the phonetic level by removing the language model from the
LVCSR decoding process. Recognition is carried out in two
passes. The rst pass is a normal time-synchronous beam
search with the acoustic model and the output is a tonal syl-
lable lattice. The second pass is to rescore within the lattice
including the acoustic and tone models to nd the most likely
tonal syllable sequences. We rst show direct integration of
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Model ML MPE

TSER 41.8 35.5

Table 4. Recognition results for embedded approach

tone model without weight training. Global setting in Eqn.(1)
is α = 1, β = 4.5 and ψWP = 35. It can be seen in upper
part of Table 1 when the TMs are incorporated into the MSR
baseline (trained with ML) and MPE trained acoustic model,
TSER is reduced from 48.3% to 41.3% and from 40.9% to
34.8%.

Then we experiment with DMWT. Smoothing constant C
in Eqn. (7) can be set to C = E

∑
i

∣∣κγMPE
q ηm,iψi(q)|η

∣∣
where E is a constant to control the training speed and con-
vergence. Results and DMWT iterations with different con-
stant E are evaluated in Table 2. As shown, for the scheme of
DMWT TSD, DMWT FMD, DMWT MCD, TSER is con-
siderably reduced from 34.8% achieved by global weight to
34.1%, 32.9% and 32.5%. In the training phase, the number
of trained weights for the three weighting schemes is 1 232,
40 243 and 1 806 565. Those unseen weights in the test set
will be given the default global value. The DMWT MCD is
consistently better than DMWT FMD with an absolute gain
of 0.4%. From the results it can be seen performance is im-
proved when the number of weight pairs increases.

Table 3 demonstrates the expected error rate by evaluat-
ing MPE objective function of DMWT with different smooth-
ing constants. We can see the expected error reduction of
DMWT MCD is much larger than that of DMWT FMD.
However, improvement of DMWT MCD to DMWT FMD
is marginal. It is shown in Table 2 recognition accuracy peaks
at certain iteration and degrades afterwards. This is mainly
because DMWT MCD is liable to overtraining for there is far
less training data per model weight pair than in TSD and FMD
(The average number of training samples per model weight
pair is 21 436, 656 and 15 for TSD, FMD and MCD). To make
DMWT FMC more robust, the model weights are smoothed
using interpolation between FMD and MCD derived weights,
i.e. ηsmooth = ρηFMD + (1 − ρ)ηMCD and ρ = 0.35 has
shown to obtain the best result. This is denoted as smoothing
shown in Table 1, which leads to about 1.0% further improve-
ment.

4.3. Comparisons with the embedded approach

To compare the results of two tone modeling approach, we
have also evaluated performance of the embedded tone mod-
eling: the ML and MPE trained acoustic model using stan-
dard 39-dim MFCC plus normalized F0 and ΔF0 tonal fea-
tures with interpolated F0 in unvoiced part of a syllable. The
TSERs are shown in Table 4. By comparing the results with
those in Table 1 and Table 4, we can see the explicit tone
modeling using global weight only outperform the embedded
approach by a slight margin. We think it might because of the
inferior TM we have exploited. It is shown when DMWT is

applied, explicit approach is signi cantly better than the em-
bedded tone modeling. From above we believe the proposed
DMWT is essential to obtain an optimal result when utilizing
explicit tone modeling in lattice rescoring.

5. CONCLUSION

We have shown the use of discriminative model weight train-
ing (DMWT) when incorporating the explicitly trained tone
models into lattice based rescoring. A smoothing technique
for reducing overtraining is presented and introduced further
improvement. Results on tonal syllable output speech recog-
nition tasks have shown DMWT derived model weights sig-
ni cantly outperformed the global model weight scheme. The
proposed DMWT also provides a promising framework for
optimal fusion of heterogeneous features or models in lat-
tice rescoring. We believe it is also applicable to other ex-
plicit tone modeling techniques as we have mentioned. Future
work includes resorting to better tone classi er and perform-
ing character output speech recognition tasks to evaluate the
effectiveness of DMWT.
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