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ABSTRACT

We consider probabilistic methods to compute the near midair colli-
sion risk using state estimate and covariance from a target tracking
filter based on angle-only sensors such as digital video cameras. Ex-
isting work is only concerned with risk estimation at a certain time
instant, while the focus here is to compute the integrated risk over
the critical time horizon. This novel formulation leads to evaluating
the probability for level-crossing. The analytic expression for this
involves a multi-dimensional integral which is hardly tractable in
practice. Further, a huge number of Monte Carlo simulations would
be needed to get sufficient reliability for the small risks that the ap-
plications require. Instead, we propose a sound numerical approxi-
mation that leads to a one-dimensional integral which is suitable for
real-time implementations.

Index Terms— Near midair collision, collision avoidance, UAV,
target tracking, level-crossings.

1. INTRODUCTION

Manned aircraft flying in controlled airspace maintain a safe distance
between each other using the service provided by an Air Traffic Con-
trol (ATC). ATC informs and orders human pilots to perform maneu-
vers in order to avoid Near MidAir Collisions (NMAC). A NMAC
between two aircraft occurs if the relative distance between the two
aircraft becomes less than a predefined distance. The last decade
semi-automatic systems like ACAS (Airborne Collision Avoidance
System) have been implemented that essentially move this responsi-
bility from ATC to the pilot. The ACAS system, however, assumes
that both aircraft exchange data on speed, height and bearing over
a data link and that both systems cooperate. When operating small
UAVs this assumption is often no longer valid. A typical UAV oper-
ates on altitudes where small intruding aircraft are often present that
do not carry transponders.

This paper describes a method for detecting hazardous situations
based on data from a passive angle-only sensor. A challenge with
angle-only measuring sensors is how to deal with the significant un-
certainty obtained in estimated relative distance and speed. One ap-
proach to increase accuracy in the distance estimate is to perform
own platform maneuvers [1]. The method in this paper does not
rely on accurate distance estimates. The reason is that the method is
based on computing the probability of NMAC over a period of time.
The method is robust to large uncertainties, as opposed to a method
based on instantaneous probability of NMAC [2] where large uncer-
tainties tend to diminish the resulting probability.
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We present an approximate solution to the in general computa-
tionally intractable problem of computing the probability of NMAC.
Although Monte-Carlo methods are known to be able to approximate
probabilities arbitrarily well [3], they are also known to be computer
intensive particularly when the underlying probabilities are small.
Here we do not rely on Monte-Carlo methods, but instead we make
use of theory for stochastic processes and level-crossings. The event
corresponding to NMAC can be seen as a crossing of the safety
zone boundary. By appropriate approximations of the safety zone
the probability of crossing the boundary becomes computationally
tractable. The same approach was applied in [2] but for the case
of known initial position and velocity. Here we consider the situa-
tion with large initial uncertainties, typically as a result of tracking
intruders based on angle-only sensors.

2. PROBLEM FORMULATION

The probability of near-midair collision (NMAC) between two aerial
vehicles for a given time period (0, T') is defined as

P(NMAC 1)) = P(0213T|s(t)\<R N [s(0)|>R), (1)

where s(t) represents the relative position between the two vehicles
at time ¢ > 0 and ¢ is the prediction time. R is the radius of a safety
zone, which we assume has the shape of a sphere, and R = 150 m.
The definition according to (1) means that if the relative distance

[s(8)] = \/52(8) + 53(t) + 2(t)

forany 0 < ¢t < T falls below R, no matter for how long, we have
a NMAC. We are only interested in a potential NMAC in the future,
thereby the added condition |s(0)| > R. The existing ACAS sys-
tem is capable of detecting and avoiding a NMAC, given a collision
scenario, with a probability which is approximately 0.95. For the
detection part it is therefore reasonable to provide a method which
computes probability of NMAC with a relative accuracy of 0.1 or
better when the underlying probability of NMAC is 0.01 or larger.

Typically, an estimate of relative position is provided by an angle-
only tracking filter [4]. Target tracking will not be pursued here in
detail, we simply state that based on measurements from an angle
measurement unit e.g. an electro-optical sensor, the tracking filter
estimates three-dimensional relative position s(0) and velocity v(0)
in cartesian coordinates together with their covariances. To simplify
the problem formulation we assume the angle measurement unit is
accurate and the coordinate system is rotated such that the z— axis
is aligned with line of sight. This means that

5y(0) = 5.(0) =0 )
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and the estimated state vector used for the probability computations
is

#(0) = [8:(0)  82(0) ,(0) 0-(0)]", 3)

together with its covariance matrix, noting from (2) that os, =
Osz = 0,

ng PO sxOvx 0 0
2
POsz0vz Opa 0 0
P(0) = C))
0 0 oz, 0
0 0 0 o2,

Without loss of generality we have assumed cross-correlation only
between s (0) and v (0). In general this is not true, but through uni-
tary transformations it is straightforward to obtain a P(0) according
to (4). We assume the tracking filter output is normally distributed,
ie.

z(0) ~ N (2(0), P(0)), ©)

Note that we will only deal with a relative time scale, represented by
t = 0 as the current time on an absolute time scale. At each new
time instant on the absolute time scale the tracking filter provides
updated estimates of 2(0) and P(0).

To be able to compute P(NMACo,7) in (1) we need a mo-
tion model which describes how the relative position propagates over
time. Here we assume the trajectory is a straight path given by

5i(t) = vi(t), i(t)=0 for
i.e. only the initial conditions influence the probability of NMAC.

=2,y 2, (6)

3. CROSSING OF THE SAFETY ZONE

Under the assumption that the path is straight, a geometric interpre-
tation of a NMAC is given by Figure 1. The collision scenario is
here projected such that the L — axis is given by the direction of the

vector [0 v, (0) vz(O)}T.
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Fig. 1. Exact geometry for the limit of NMAC as seen when pro-

jected onto the plane spanned by v1 (0) = /v2(0) 4+ v2(0) and
v2(0).

It is straightforward to show, ignoring ¢ = 0 for notational con-
venience, that

P(NMACo.1y) = P(C1 NC2 N C3), Q)
where N denotes logical *and’, and
Ch =szsinf8< R,

sz cos 3 —/R? — s2sin? 3
(v3 +v])1/2

C3=38>R N vy, <O0.

Cr = (®)
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C1 in (7) and (8) is a condition on the direction of the relative veloc-
ity, where 8 = arctan % (5 is a condition on the magnitude of
the relative velocity. C5 is needed because otherwise if s, (0) < R
it is already too late or if v, (0) > 0O there will never be a NMAC.

4. MONTE-CARLO APPROXIMATION

The probability according to (7) is in general very difficult to com-
pute. A straightforward approximative solution is to use a Monte-
Carlo method, i.e. to draw NN samples of (0) from (5) and approx-
imate the probability with the outcome of the sampling. Denote the
true value of the sought probability with p. The set of samples is
binomially distributed, Bin(N, p), but for a large enough N, usually
Np(1 — p) > 20 is adequate, the probability is approximated well
by [5]

N
1 i i i 1-
N2 O ne gl ~ Np,o®), 02:1%- ©)
=1

For a relative mean square error € < % we can write needed number
of samples according to
1-p 1

N > ~—,
~ €p €2p

(10)

where the last approximation is valid for small p. Assume p = 0.01
and 3e < 0.1, i.e a relative error smaller than 10% with probability
0.997. These values plugged into (10) suggests that we must use
N > 90000. For many on-line applications this means a too high
computational load.

5. SOLUTION BASED ON APPROXIMATION OF
GEOMETRY

5.1. Geometric Approximation

A good approximation for a NMAC to occur is to say the relative
position must cross a plane surface instead of a curved surface. Here,
the plane surface is given by a circle orthogonal to line of sight and
with radius R, see Figure 2.

>
s2(0)

Fig. 2. Approximate geometry for the limit of NMAC as seen when

projected onto the plane spanned by v (0) = y/v2(0) + v2(0) and
vz(0).

An approximate probability of NMAC then becomes
P(NMAC o,1)) = P(C1 N C5N C3), (11)
where
C| = sy tan f< R,
oy =22

~ ol

Ch=5:>0nN v,<0.

<T, (12)



Define a random variable 7 according to

Sz
T = [V |
[0.9]

where 7 represents the time it takes for the distance between the two
objects along line of sight to decrease to 0. The distribution for 7 is
given by Lemma 1.

if C4 is true,
otherwise,

(13)

Lemma 1 (Probability distribution for 7) For a stochastic process
{sz(t),t € R} with assumption (6) the probability of a down-crossing
within T sec is given by

P(r<T)= / / 3 Dsa,vs (8, v)dvds,
0 —o0

where Ds, v, (8,v) is the joint probability function for sy and v,.
Proof: See Appendix A.

(14)

Now we can formulate the approximate probability of NMAC (g, 7y
in (11) according to

P(rvy < RNT<T), (15)

i.e. given 7 = t, if vy is not large enough for the distance perpen-
dicular to line of sight to become at least R after ¢ seconds there will
be a NMAC. The probability according to (15) is given by Lemma
2.

IS(NMAC(O,T) ) =

Lemma 2 (Probability of down-crossing of a given circle) Fora

stochastic process {s(t) = [sz(t) sy(t) s(t)] Tte R} with
assumptions (2), (4) and (6) the probability of a down-crossing within
T sec of a circle with x—axis as its normal and radius R is given by

P(NMAC( 1))

P(r<T)— /;: P2 (v) <P(T <T)—P(r <

T2

:P(Tvl<RﬂT<T):

R (16)
ﬁ)d“’

where P(1 < T) is given by Lemma 1.
Proof: See Appendix B.

Assuming the involved random variables are normally distributed
the approximate probability for NMAC is given by (16) with the cor-
responding expressions for Dy2 (v) and P(r < T) inserted. The

random variable v? is a weighted sum of two non-central x— dis-

~2
tributed variables, i.e. with A\; = ;% fori =yand z

vi

b (0) = 0%yl [ pg(©palo - e,
| py

SE o Ay a7
e - )

p2(&) = E fori = y and z.

i () (26)2 = KIT(k+3)

The distribution P (7 < T') is given by

1 00 roo w2 _2nuvto?
P(T<T) = 71/ / e 20-7%  dodu, (18)
2r(1 —n?)2 Ji Jn
where k = — ::I and
h— Sz + 0T
02, T2 + 200 5000a + 02,
V p .
n=— vaacT + Osz

\/0’ng2 + 2p O',szco—’uxT + ng .
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5.2. Numerical Approximation

A simple and effective way of evaluating the outer integral in (16) is
to apply Simpson’s rule, i.e.

M
f(v)dv = g(f(”(o)) + 42 Fo®=D)
i=1

L (2M)

A(O)

M—1 (20)
+2> 0 f)+ f(v(QM))> + Ru,
=1
where h = Wa v® = 0@ L ihand Ry < %gs ‘f(4)(f)|

for v(® <¢L p(2M),
To compute a one-dimensional normal distribution ®(-) a very
accurate result is given by [6]

a) :/;m)dx: \/%/me—*

a2 2 (21)
¢1 Te™ T +16e7”(V2-2) 4 (7 4 T )e—a? .
4 120 2’

for a > 0. According to [6] the relative error in (21) is less than
3 x 10™%. This is used in order to compute an approximation of (18)
according to [7]. The probability from (18), with k, h and n taken
from (19), is written according to

—h
P(r <T) = &(~h) — @(k)E{@(%) lu < k:} (22)
-n
The approximation consists of replacing v under the expectation in
(22) with its conditional expectation E[ulu < k] = —%. This
means that (22) is approximated with

(k)
o (ky

+h
Wi ) (23)

From [8] we know we can approximate the density in (17) with
a single central x? according to

U*(/g)psz m(” V2f +f)

P(r <T)=®(—h) - @(k)@(

Dz (v) = (24)

where

ol

L1 _
§2 e 2,

P2 (&) = F(g)

2: 2 ~2
Uvi+vi7

1/2
( Z oyi + 207 00;) ) :
(c(v?))°
8( S, o0t 3171-2032-)2 .

To summarize, the expression to numerically compute
P(NMAC g, 1)) in (16) is

m(vl) =

(25

f:

P(NMAC o,1)) = P(1 < T) —

/;:ﬁvi (v) (P(T <T)-P(r <

T2

R (26)
ﬁ)d”’



where P(r < T') is given by (23) and Doz (v) by (24). The integral
in (26) is solved by applying Simpson’s rule according to (20) with
M) = m(?) + 60 (v?).

6. SIMULATION RESULTS

Figure 3 shows P(NMAC g, 50)) computed according to (26) with

M = 50 as a function of 8 = arctan £ compared to the Monte-
Carlo solution from (9) when 5, = 2000 Uy = 120, 05, = 400,
vz =30, p=0.8,0y = Uy tan B, 0. = 0, oyy = (v o2, /52 +

$2107%)"? and 0. = 3,107,

P(NMAC

o, 50) Difference
1 0.01
0.9 0.008
0.8 0.006
0.7 : : 0.004
0.6 0.002
0.5 0
0.4 -0.002
0.3 -0.004
0.2 -0.006
0.1 -0.008
0 -0.01

0 5 10 15 0 5 10 15
Beta (deg) Beta (deg)

Fig. 3. The left plot shows P(NMAC g 50y ) according to (26) using
M = 50 (solid line) and the Monte Carlo solution given by (9)
(= 0.01 at 8 = 9.5) using 500000 samples (dashed line). The
right plot shows the difference between the two solutions (solid line)
including the 3-o confidence interval for the Monte Carlo solution
(dotted lines).

Table 1 shows the relative error for P(NMAC g 50)) given by
(26) evaluated at p = 0.01 when o, and o, vary. If the require-
ment on the relative error is less than 0.1 at p = 0.01 we deduce
from Table 1 that if o5, < 400, i.e. "S—I < 0.2, the requirement is
met. The reason for the worse accuracggl for larger variances is pri-
marily due to the approximation according to (24). For better result
in cases with large variances a better approximation is needed.

Table 1. Relative error € at p = 0.01 for the algorithm given by (26).
osz 666 500 500 400 400 333 333
ovz 40 40 30 30 24 24 20
€ 05 022 022 0.12 012 0.06 0.07

7. CONCLUSIONS

In this paper we have presented a method to compute the probability
of near midair collision between two vehicles flying along straight
trajectories. Near midair collision is defined as the event of the rel-
ative position crossing the safety zone boundary. By appropriate
geometric and numerical approximations the probability of crossing
the boundary becomes computationally tractable. Through simula-
tions we have shown that for a certain collision scenario the method
meets the given accuracy requirement as long as the variance of esti-
mated relative position is not too large. Compared to a Monte-Carlo
approximation at the same level of accuracy the method decreases
computational load by approximately two orders of magnitude.
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A. PROOF OF LEMMA 1

Due to v(t) = v(0), for a down-crossing to occur we must have
$2(0) > 0 and v;(0) < 0. For a down-crossing to occur within the
time frame 0 < ¢ < T the velocity needs to be

o0 < v (0) < 520 @7
T
The probability for this to happen is
o rF
P(r<T)= / / Dsy s (8, 0)dvds. (28)
0 —o0

B. PROOF OF LEMMA 2

Using the density for the mutually independent v, and 7 we have

P(rv. < RNT<T) =P} < = i ;N7 <T)
(29)
t_2
/ / v)p-(t)dvdt.
Changing the order of computation in (29) yields
P(rvy <RﬁT<T) =
/RZ / v)p-r t)dtdv +/ / pv v)p-(t)dtdv = (30)

8

P(r <T)— /R Pz (V) (P(T <T)—P(r< %))dv

T2
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