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ABSTRACT 

 In this paper we compare two radar target direction-of-
arrival (DOA) estimation algorithms, the classical moving 
window (MW) and the asymptotic maximum likelihood 
(AML) estimators. The first technique for azimuth DOA 
estimation exploits multiple detections in the same time-on-
target and the second one exploits the fact that the radar 
antenna mechanical scanning impresses an amplitude 
modulation on the signals backscattered by the target. 
Performances of the estimators are numerically investigated 
through Monte Carlo simulation in terms of root-mean-
square-error (RMSE), probability of detection for a fixed 
probability of false alarm, and probability of “splitting”. The 
obtained results show that the asymptotic maximum 
likelihood estimator generally outperforms the classical 
moving window estimator.  

Index Terms— Radar signal processing, direction of 
arrival estimation 

1. INTRODUCTION 
 
 The estimation of target direction of arrival is not new 
in radar literature, in both tracking and searching radars. 
One of the most common techniques is the monopulse [1] 
which in principle can work with just a single pulse using 
for azimuth estimation two tightly matched receiving 
channels: the sum and the difference channels.  
 In this work we compare two multi-pulse algorithms 
that work with only one channel, the moving window [1], 
often implemented in commercial radars, and the more 
modern asymptotically maximum likelihood estimator [2] 
with the aim of measuring vantages and advantages of both 
techniques. The first technique for azimuth DOA estimation 
exploits multiple detections in the same time-on-target, and 
the second one exploits the knowledge of the antenna main 
beam pattern and the fact that the antenna mechanical 
scanning impresses an amplitude modulation on the signals 
backscattered by the targets.
 The paper is organized as follows. After this short 
introduction, in Section 2 the data model and the problem 
statement are presented and explained. In Section 3 and 4 

the MW and the AML estimators are summarized. Section 5 
shows some results and draws some conclusions.  

2. DATA MODEL AND PROBLEM STATEMENT 

 Consider a radar antenna which rotates mechanically 
with constant angular velocity R rad/s and denote by 

( )h  the one-way antenna beam pattern, by  the 
maximum gain, and by 

0G

B  the -3 dB azimuth beam width, 
i.e. the angle such that 2

0 2Bh G( 2) . The number N
of pulses collected during the time-on-target (ToT) by the 
radar within the -3 dB points is given by ( )B RN T ,
where T=1/PRF is the radar pulse repetition time (PRT) and 
PRF is the pulse repetition frequency. The number N of 
pulses can be changed by changing the angular velocity R

of the rotating antenna or the PRF value. 
 Assume that M point-like targets, with direction of 
arrivals 1{ }M

TG i i  and Doppler frequencies 1{ }M
Di if , are 

present in the same range-azimuth resolution cell under test. 
The data vector z is composed by the collection of the N
echoes received during the ToT. The nth element of z is 
given by 

2

1
( ) ( , ) ( )Di

M
j f n

i TGi
i

z n b G n e d n , , (1) 0, 1, 1n N

where bi is the unknown deterministic complex amplitude of 
the ith target signal,  is the two-
way antenna gain for the nth pulse from the ith DOA, 

2( , ) ( )TGi TGi RG n h n T

[0, )TGi B ,1 and ( 0.5,0.5)Dif  is the Doppler 
frequency of the ith target normalized to the PRF. The term 

 models the disturbance that, in general can be 
composed of thermal noise and clutter. In this work we 
suppose that is only white Gaussian noise.  

( )d n

( )d n
 In vector notation, the data model for M targets is 
given by 

1 The assumption that [0, )BTGi  is equivalent to assume that 
no contaminating targets are present in adjacent azimuth cells.  
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, (2) ( )z A b d

where  is the  complex data 
vector,  is the 

[ (0) ( 1)]Tz z Nz

1 2[ ]T
Mb b bb

1N
1M  vector of the 

unknown complex amplitudes,  denotes the transpose 
operation,

[ ]T

1 1 2 2( , ) ( , )TG D TG Df fA a a

M
2 1

( ) )DM

N 1 Df

( ,TGMa

1 TG M D

f

TG

 is the 

 steering matrix,  is 
the

[ ]T
Mf

M
( , )TGi Dif

 vector of the unknown DOAs and Doppler 
frequencies, a

( , ) (TGi Di TGif
 is an  vector that can be 

factored as 
1
(

N
) )Difa g

0, 1, ,n N
p

1
, whose elements 

are given by, for :

2[ ( , )] [ ( )] [ ( )] ( , ) Dij f n
TGi Di n TGi n Di n TGif f G na g p e  (3) 

where  represents the Hadamard product or element-wise 
multiplication, [ ( )] ( , )TGi n TGiG ng  and 

2[ ( )] Dij f n
Di ep nf . Note that ( )TGig  depends only on TGi ,

whereas ( )Difp  is only function of Dif .
 The  disturbance vector d is modeled as a 
complex zero-mean white Gaussian vector. In shorthand 
notation, we write , where 

1N

2~ ( , nCNd 0 )I 2
n  is the 

variance of each noise component and I is the N N
identity matrix.  

3. THE MOVING WINDOW 

 The scheme of the moving window is shown in Figure 
1 [1]. The echoes collected by the radar during the scanning 
in the ToT are saved for each range cell into a shift register 
(SR) (first line in the scheme). The amplitude of each echo 
is compared with a first threshold , that is 

1

0

( )
H

H
z n  (4) 

In this way the string of amplitudes is converted in a string 
of bits “0” and “1”, “1” when the threshold is overcome, “0” 
conversely (second line in the scheme). Last N bits of this 
string are added and compared with a second threshold K. A 
target is declared present if this second integer threshold is 
overcome (K out of N detection rule). 
 The threshold , related to the probability of false 
alarm s

FAP  on the single pulse, and K are chosen such that 
the overall probability of false alarm FAP  after the pulse 
integration assumes some desired value *

FAP . Different 
combinations of  and K can provide the same *

FAP . For 

maximizing the detection probability, often the second 
threshold is chosen such that 2K N  [1] 
 It is easy to verify that, if the probability of false alarm 
on the single pulse is 0

s
FAP P , the FAP  after integration is 

   0 0(1 )N j N j
FA j K

N
P

j
P . (5) P

Fig.1 - Moving window scheme 

All the detections after the second threshold are saved in a 
second string2 (last line in the scheme) that is used by the 
radar processor for the target DOA estimation.  
Let’s define start  as the angular position corresponding to 
the first detection (first bit 1 in the second string) and end

as the angular position of the last detection. The target DOA 
is estimated as [1] 

ˆ
2

start end
TMW  (6) 

In picking start  and end  in the string, the processor checks 
for the continuity of the 1s. If more than two consecutive 
zeroes are present, the estimation is not done and a “split” is 
declared. The split corresponds to a possible presence of 
more than one target in the same range-azimuth cell.  

4. THE AML ESTIMATOR 

A detailed theoretical derivation and analysis of the 
asymptotic maximum likelihood (AML) estimator of target 
DOA and Doppler frequencies3 for the data model at hand 
(eq. 2) has been presented in [2] and [4]. Here we 
summarize some results. The AML estimator for M targets 
can be found by solving the following maximization 

2 Bit 1 for detection, bit 0 for the alternative hypothesis. 
3 The moving window estimates only the DOA, does not estimate 
also the Doppler shift of the target. 

(0)z ( 1)z N

00 1 1 0 00

z( )N( 1)z

1 1 00

00

K

0 1 1 1 1 1

endstart
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problem with respect to the vector of unknowns 
1 2 1 2 ( , , , , , , , )T

M Mf f f :

1 2 1 2( , , , , , , , ) 1

ˆ arg max ( , )
M M

M

AML N i i
f f f i

f  (7) 

where in our case, 
2 2( , ) ( , ) ( , )H

N i i i i i if f fz a a .

Observe that ( , )N f  is the functional that must be 
maximized when the radar knows that only one target is 
present in the same range-azimuth cell. 
In the scenario that we analyze, we simulate only one target 
but we suppose that the radar does not know the value of M.
It knows only that the maximum number of targets is M=2,
then in eq. (7) the vectors of unknowns is 

1 2 1 2 ( , , , )Tf f

m

. For estimating the number of targets 
actually present in the cell under test (0, 1 or 2) the radar 
performs a successive hypothesis test (SHT) as in [3]. The 
successive hypotheses test is a procedure for model order 
selection which tests a set of mutually exclusive hypotheses 
H  and alternatives mK . At step m the SHT procedure 
tests the hypothesis 1mH , “There are  targets” against 
the alternative 

1m

1mK , “There are  targets”, by comparing 
a certain test statistic  with a certain threshold 

m
(mS z) m , In 

this work, as test statistic , we adopt the generalized 
likelihood ratio test (GLRT) [3]. Then, the test at step m is 
given by 

(z)mS

1

1

1
1

1
,

1 1

ˆ( ; )
>( ) 2 ln ( ) 2ln <ˆ( ; )

Km

m

Hm
m

m mK
m G m

m mH

p K
S L

p H
m

z

z

z
z z

z

(8)

where  denotes the generalized likelihood ratio 
(GLR) for hypothesis 

, ( )G mL z

1mH  and alternative 1mK ,
( ;m mp H ,)

mHz z  is the data probability density function 

(pdf) under hypothesis mH  and  is the maximum 
likelihood (ML) estimate of  under hypothesis 

ˆ
m

m mH  (note 
that {m targets are present}) as stated in (8). 
Therefore, hypotheses  are tested in 
sequence, going to the next one only if previous hypotheses 
have been rejected. The procedure stops the first time the 
statistic does not exceed the threshold or when the number 
m of hypothesized targets reaches the maximum value 

 (at step ). If the procedure stops at step m we 

estimate , otherwise . In our 

simulation . The thresholds  are selected 
in order to provide the desired 

1m mK H

x maM

M̂ m

maxM

max
, MH

ˆ

0 1{ ,H H 1, }

M M
2

m m

maM x

1

2
max

1

FAP  at the end of the entire 

detection procedure. In radar detection applications it is 
essential to control the probability of false alarm. The great 
advantage of using an SHT approach relies on the 
possibility of upper bounding FAP . In fact, if all the 
thresholds { }m  are selected to provide the same local 
probability of false alarm  at each step, i.e. 

1( ) Pr{ (mS ) }FA m mP m H

M

z , then the probability of 

false alarm of the entire procedure, , is 
upper bounded by 

ˆPr{ }FAP M
, i.e. FAP . This property makes the 

SHT procedure extremely appealing, but at the same time, 
difficult to implement. In fact, to select m , it is necessary 
to know the pdf of  conditioned on the hypothesis ( )zmS

1mH . Unfortunately, this pdf is not available or very 
difficult to compute in closed form. Therefore, we resort to 
large sample-size analysis, both to derive the statistics of the 
tests  that can be calculated in real-time with 
affordable computational complexity, and to properly set the 
thresholds {

{ (mS )}z

}m . Details on this derivation are in [3]. 

5. NUMERICAL RESULTS AND CONCLUSIONS 

 In the simulation the pattern of the antenna array has 
been chosen as in [5] 

1

1

cos (

cosh

N u
2NT

co 1u

u

s 2

h 2

)

)

1

1cose (N u

e

e

 (9) 

where 2Ne+1 is the number of array elements that depends 
on the beamwidth of the antenna, 0 cos 2u u ,

2 sind , d is the distance between two elements 
of the array,  is the radar wavelength. The value of u0

depends on the side lobe level of the antenna pattern, that is 

2 10u
1cosh

2 eN
ln , where 2010SLL , and 

SLL is the side lobe level in dB.
Due to the two-way antenna pattern in eq. (1) we have 

2 1s si

e

R
d

T

2

2

2 co

NTG T

( )z n bG

, ,

c

TG

e o

n

N u

, TG

cos

G n

os

2) Dj fe

n TG n

0, 1,n( )n

 (10) 

When only one target is present the observed signal is 

, , (11) ( nn d 1N

The parameters of the analyzed scenario are summarized in 
Table 1. The signal-to-noise ratio is defined as 

2 2
nSNR b .
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Target Doppler shift fD =0.3
Number of pulses per 
cell

N=28

Second threshold of MW 14K
Signal-to-noise ratio SNR=30 dB 
Antenna beamwidth 3B

Sidelobe level SLL=30 dB 
Probability of false alarm 310FAP
DOA of target 0.5TG

0

0.2

0.4

0.6

0.8

1

-4 -2 0 2 4 6 8 10 12 14 16 18 20

MW
AML

P D

SNR (dB)

Table 1 – Parameters of analyzed scenario. 

In the figures 2-4 the DOA of the target has been set to 
, but we obtained very similar results for other 

angular positions in the antenna mainbeam. 
0.5TG

 In figure 2 we report the RMSE of the DOA for both 
estimators as a function of the signal-to-disturbance ratio. It 
is evident that the AML estimator always outperforms the 
MW, particularly for high SNR. It is important to observe 
that the estimation is performed by both algorithms only 
when at least one target is detected. The probability of 
detection as a function of SNR is shown in Figure 3. In that 
sense the performances of MW and AML algorithms are 
very similar.  

Figure 3 – Probability of detection of the MW and AML 
techniques, PFA=10-3.
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 Figure 4 shows the probability of splitting. For the 
MW a split corresponds to the presence of at least two 
consecutive zeroes in the string of detections, for the AML 
it corresponds to a declaration by the successive hypothesis 
test that the targets present in the cell under test are two 
instead of only one. It is evident from Figure 4 that the 
AML algorithm is more robust to the target splitting than 
the MW. 
 Based on our results we can conclude that the AML 
estimator always outperforms the MW at the cost of more 
complex signal processing devices and a higher number of 
operations.

Figure 4 – Probability of splitting of the MW and AML 
techniques, PFA=10-3.
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