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ABSTRACT

The use of complementary codes as a means of reducing radar

range sidelobes is well-known, but lack of resilience to Doppler

is often cited as a reason not to deploy them. This work de-

scribes techniques for providing Doppler resilience with an

emphasis on tailoring Doppler performance to the specific

aim of target tracking. The Doppler performance can be var-

ied by suitably changing the order of transmission of multi-

ple sets of complementary waveforms. We have developed

a method that improves Doppler performance significantly

by arranging the transmission of multiple copies of comple-

mentary waveforms according to the first order Reed-Müller

codes. Here we demonstrate significant tracking gains in the

context of accelerating targets by the use of adaptively chosen

waveform sequences of this kind, compared to both a fixed

sequence of similar waveforms, and an LFM waveform.

Index Terms— Doppler tolerance, complementary wave-

forms, radar, tracking

1. INTRODUCTION

An important problem in radar performance, especially in the

context of multi-target detection and tracking, and in clutter-

limited situations, is the presence of sidelobes in the auto-

correlation of the illuminating waveform. Pulse compression

methods in radar require the use of waveforms with low side-

lobes, but the mathematics of the ambiguity function prevent

this. For single waveforms, sidelobes must exist. From a

radar performance viewpoint, this means that targets of in-

terest can be hidden in the sidelobes associated with a nearby

strong reflector. Complementary waveforms provide the pos-

sibility of zero range sidelobes, at least in theory. When these

are transmitted separately their summed auto-correlations, at

zero Doppler, form a true “thumbtack” response with no side-

lobes. Unfortunately this does not remain true off the zero

Doppler axis. The presence of delay (range) sidelobes off the

zero-Doppler axis is a significant problem in the deployment

of complementary waveform techniques. We remark that suit-

able separation of the received waveforms is crucial to the

complementary waveform technique. In our application the

waveforms are transmitted on time separated pulses. A dis-

cussion of frequency separation is given in [?]. We show that,

by careful design, of the order of the train of complementary

pulses it is possible to achieve superior range sidelobe perfor-

mance in the presence of moving targets.

In section ?? we briefly introduce Golay sequences and

their performance in terms of radar range sidelobes. This

topic is taken up in more detail in, for example [?]. We also

define first order Reed-Müller codes and give the formulae for

the construction of such codes. Section ?? discusses the prob-

lems associated with the use of complementary sequences in

radar applications. In particular, the problem of range side-

lobes introduced by the doppler shift of the target, when the

complementary waveforms are transmitted in a time separated

way. The section shows the way to mitigate these sidelobes,

by transmitting the pulses in a particular pulse train, given by

a binary sequence with special properties. We give an algo-

rithm for choosing the optimum Reed-Müller sequence in [?].

Section ?? presents an example of scheduling of the Reed-

Müller sequence in an application to a single target tracking.

In this example we demonstrate significant improvement in

performance compared to the non-scheduled case.

2. GOLAY COMPLEMENTARY SEQUENCES

A complementary pair of sequences satisfies the property that

the sum of the out-of-phase auto-correlation coefficients is

zero. Let x = (x0, x1, . . . , xN−1) be a sequence of length

N (usually a power of 2) such that xi ∈ {+1, −1}. Define

the auto-correlation function of x by

X(k) =
N−k−1∑

i=0

xixi+k, 0 ≤ k ≤ N − 1. (1)

Let y be another such sequence, and Y the corresponding

auto-correlation function. The pair (x,y) is called a Golay
complementary pair if

X + Y = 2Nδ(k), (2)

where δ denotes the Kronecker delta function: δ(k) = 1 if

k = 0 and zero otherwise. Each member of the Golay com-

plementary pair is called a Golay complementary sequence.

Implementation in a radar context involves transmission sep-

arately on, say, time separated pulses, and the addition of the
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match-filtered returns to provide essentially zero range side-

lobes.

We will also need to recall Walsh matrices. The Walsh

matrices Hn of order n; that is, of size 2n×2n, are constructed

by induction as follows:

H1 =
(
1
)
,

H2 =
(

1 1
1 −1

)
,

and

Hk =
(

Hk−1 Hk−1

Hk−1 −Hk−1

)
= H2 ⊗Hk−1,

for 2 ≤ k ∈ N , where ⊗ denotes the Kronecker product. The

rows of the Walsh matrix Hn can be viewed as a length 2n

linear error-correcting first order Reed-Müller code of rank

n. The Walsh matrix can also be obtained by defining the

element in the kth row and mth column of H as

h(k,m) = (−1)
n−1P

i=0
kimi

=
n−1∏
i=0

(−1)kimi

where {k0, k1, . . . , kn−1} and {m0, m1, . . . , mn−1} are the

binary representations of k and m, respectively.

3. DOPPLER TOLERANCE

Let x0 and x1 be a complementary pair of waveforms with

auto-correlation functions X0 or X1, respectively. The two

are pulses modulated onto a carrier. They are then transmitted

with a time separation, that is, pulse repetition interval (PRI),

of ΔT , in such a way that the phase information from the

carrier is retained. It is enough for our current purposes to

consider the case of a single scatterer at delay τ and Doppler

frequency φ “at baseband” (without inclusion of the carrier

term exp 2πifct). Here φ = 2v
λ , where v is the target velocity

and λ is the wavelength. The returns from the first and the

second pulses are then

xn−1(t− τ)e2πφ(t+(n−1)ΔT ) (3)

with an appropriate multiplicative factor to account for the de-

cay due to range and the reflectivity of the scatterer. We can

assume that φ is small enough so that e2πφt is almost constant

for the pulse duration t, which is typically a lot smaller than

ΔT . At this point the return signal is filtered against the trans-

mit signal. From a mathematical point of view this results in

the following match-filtered response:∫
R

xn−1(t′ − τ)e2πiφ(t′+(n−1)ΔT )xn−1(t′ − t)dt′, (4)

where ·̄ denotes the combination of complex conjugation and

time reversal. Ignoring the e2πφt term, we obtain an approxi-

mation to the match-filtered return,

e2πiφ(n−1)ΔT Xn−1(t− τ), (5)

where Xn−1 is the auto-correlation function of xn−1. The

sum of the match-filtered returns for the two pulses takes the

form

F (θ) = X0 + exp(iθ)X1 (6)

where θ = 2πφΔT is the Doppler offset.

The inter-pulse time ΔT is assumed long enough that

most of the return from a given transmit pulse arrives back

within the subsequent listening period.

At zero Doppler we have the desired sum X0+X1, which

by the Golay property is a delta function, or to be precise, a

triangle function of 2 chips width, but this degrades quickly

as |θ| increases.

To mitigate the effects of the Doppler offset we construct a

length 2M pulse train, represented by a string of ±1’s, where

−1’s denotes a pulse with auto-correlation function X0 and

1’s a pulse with auto-correlation function X1. In [?], the ini-

tial segments of length 2n of the Prouhet-Thue-Morse pulse

train are used to provide a method for choosing the order of

the transmission of the waveforms in a time-separated way.

That paper showed that, by the correct choice of order, it was

possible to significantly reduce the effects of Doppler on the

sidelobes of the summed auto-correlation function. In [?] we

have generalize this result to an arbitrary pulse train and per-

form the analysis for the first order Reed-Müller code pulse

trains.

Consider a binary sequence of−1’s and 1’s p = {pn}, n =
1, . . . , 2M and the p pulse train. The sums of auto-correlation

functions in this case can be calculated as

Fp(θ) = X0

∑
pn=−1

exp(iθn) + X1

∑
pn=1

exp(iθn). (7)

For a non-zero θ, after a simple algebraic manipulation, we

have

Fp(θ) =
1
2
(X0 + X1)

2M−1∑
n=0

exp(iθn)

+
1
2
(X1 −X0)

2M−1∑
n=0

pn exp(iθn).

(8)

The first term of Eq. (??) represents the main lobe and for a

Golay pair of waveforms is equal to

Nδ(t)e(2M−1−1)iθ sin(2M−1θ)
sin(θ/2)

. (9)

The second term of Eq. (??) represents the range sidelobes

of the ambiguity function for non-zero Doppler. Observe that

the size of the second term depends on the spectrum of the

sequence p. It is also clear from Parseval’s theorem, that the

spectrum has finite positive energy and cannot be zero ev-

erywhere. Instead, the shape of the spectrum can, to some

degree, be tailored to be small at a particular θ, resulting in

range sidelobe reduction for a particular Doppler.
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In [?] we showed how to select Reed-Müller pulse train

to minimize the ambiguity sidelobes for a given Doppler fre-

quency θ.

4. TARGET TRACKING USING RM(1, M) PULSE
TRAINS

Here we present simulation results of a target tracking appli-

cation of the ideas described above, where the pulse trains are

scheduled on the basis of the prior state estimate of the tar-

get. Our simulations are based on an X-band radar simulation

with 10cm wavelength, and 100 μsec PRI. Each pulse con-

sists of 64 chips, each of length 10 nanoseconds. We are able

to demonstrate significant gains in tracking performance by

the use of scheduling.

We state the tracking problem as follows. Our aim is to

track an accelerating target, evolving at discrete epochs ac-

cording to dynamic equation

xk = Fxk−1 + ω, (10)

where x =
(
r ṙ r̈

)T
, r is range, ṙ is range rate, r̈ is ac-

celeration and F =

⎛
⎝1 T T 2/2

0 1 T
0 0 1

⎞
⎠, T is the time inter-

val between epochs and ω is zero mean Gaussian noise with

covariance matrix Q. The target is illuminated by a radar,

which transmits an appropriate pulse train of a pair of com-

plementary waveforms. We assume, for simplicity, that there

is a constant variance (uniform) Gaussian clutter in each range

and Doppler bin. The measurements from the target are given

with probability pd by

yk = Hxk + ν, (11)

where H =
(

1 0 0
0 1 0

)
and ν is independent zero mean

Gaussian noise with covariance matrix R, given by the Hes-

sian of the sum of the ambiguity functions of a complemen-

tary pair of waveforms at the main peak [?]. In this example

we use a Kalman filter based tracking algorithm. Define by dk

a detection indicator taking the value 1 if the target is detected

with probability pd at time k and 0 otherwise. The prediction

is performed in the usual way for most tracking filters, using

the target dynamic equation, in our case Eq. (??).

x(k|k − 1) = Fx(k − 1|k − 1)

P(k|k − 1) = FP(k − 1|k − 1)FT + Q,
(12)

where x(k|k − 1), P(k|k − 1) and x(k − 1|k − 1), P(k −
1|k − 1) are prior and posterior state estimate means and co-

variances. The next step is to schedule the pulse train. In this

example we choose the RM(1, M) pulse train which mini-

mizes the sidelobes of the sum of matched filtered returns.

This, in effect, maximizes signal-to-clutter ratio (SCR) and

therefore pd in the context of uniform clutter. Assuming that

the detection was obtained by a likelihood ratio test realized

via, for example, the cell averaging CFAR method, we can

write the well known formula for pd,

pd = 1− Φ(Φ−1(1− pfa)− SCR), (13)

where Φ is the Gaussian cumulative distribution function [?].

We next assume that probability of a false alarm pfa is fixed,

which is consistent with the uniform model of clutter. From

Eq. ?? it is clear that for fixed pfa, maximizing SCR is equiv-

alent to maximizing pd. To maximize SCR over RM(1, M)
codes we use the algorithm of [?].

Next the measurements are collected: these are received

from the target with probability pd. No detection results in

no measurement and the detection indicator dk is set to 0, a

detection results in 1 measurement and the detection indicator

dk is set to 1. The tracker state update incorporating these

measurements is

x(k|k) = x(k|k − 1) + dkPHT S−1(yk −Hx(k|k − 1)

P(k|k) = P(k|k − 1)− dkP(k|k − 1)HT S−1HP(k|k − 1),
(14)

where S = HP(k|k − 1)HT + R. When the target is not

detected, i.e dk = 0, the state update is equal to the predicted

state. When the target is detected dk = 1, the state update

follows the standard Kalman update [?, ?].

Below we presents the result of Monte-Carlo simulations

for tracking an accelerating target using three different meth-

ods of illumination:

• a pulse train consisting of repetitions of a linear fre-

quency modulated pulse (linear chirp) with 20 MHz

bandwidth,

• a PTM pulse train, identical for all epochs and

• epoch-to-epoch scheduled RM(1, M) pulse train based

on the current knowledge of the target state, using the

algorithm of [?]. The optimum choice of RM(1, M)
sequence maximizes the probability of target detection.

The target trajectory is given in Fig. ?? over a period of 50
epochs, each 1 sec long. The measurements were collected

by a cell averaging CFAR detection method with the follow-

ing parameters: 25 dB additive threshold, and 25 range cells

before and after the cell of interest. Fig. ?? shows average

signal-to-clutter ratio (SCR) at each epoch for the three meth-

ods. Although almost independent of the speed of the target,

the SCR for an LFM waveform is significantly lower than

the SCR for a complementary pair. Fig. ?? shows the num-

ber of detections at each run. Notice, that in the scheduled

case, pd is close to 1, but is only around 0.73 for PTM and

even lower (0.38) for LFM. Figs. ?? and ?? show position

and velocity RMSE for the three methods. Clearly in these

experiments, scheduling of measurements gains considerable

improvements in accuracy of tracking over an unscheduled

methods.
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Fig. 1. Target trajectory
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Fig. 2. Average signal-to-noise ratio at each epoch

5. CONCLUSION

We have demonstrated a method for scheduling sequences

of complementary waveforms to provide Doppler resilience

around a particular Doppler bin. This permits the implemen-

tation of an adaptive scheme for optimal waveform transmis-

sion for detection of a low SNR accelerating target in a clutter-

limited environment. This scheme provides significant im-

provement in target detection and track error over both an un-

scheduled scheme for Doppler resilience of complementary

waveforms, and a conventional LFM illumination scheme.
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