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ABSTRACT
Automated tracking of targets within outdoor infrared (IR)

video sequences poses a host of challenges. These include au-

tomatic gain adjustment in the IR camera, extreme granular-

ity, large luminance changes, and uncontrolled environmental

factors such as moving foliage, animals, and birds, among

others. To address these problems, we present an IR video

target tracking system for stationary cameras that learns and

divides the video frames into reliable and unreliable regions.

A difference-frame-based method can recognize moving re-

gions with high sensitivity and reliably discern background

clutter from target motion. A low-complexity target valida-

tion process is presented, which in conjunction with the reli-

able region masking, dramatically reduces the number of false

alarms. We demonstrate the outstanding performance of the

proposed system using real-world IR video sequences with

difficult background motion clutter, as well as with small and

blurred moving targets.

Index Terms— target detection, target tracking, infrared

video, reliable region, tracking-based detection

1. INTRODUCTION

Detection and tracking of targets in infrared (IR) video have

been the subject of research for many years. Infrared video

often has low contrast, strong thermal noise, and poor resolu-

tion. Furthermore, in outdoor environments, the uncontrolled

lighting, strong foliage movement, flowing water, and adverse

weather are severe challenges faced by detection and tracking

algorithms. Depending on the target size, infrared tracking

can be classified as point-based and region-based. Point-

based approach often model targets as a two-dimensional

Gaussian function, e.g.,[1], [2]. Longin et al [3] proposed a

detection algorithm by examining the changes in spatiotem-

poral texture. They used nearest-neighbor methods for track-

ing that resulted in significantly better performance over the

Stauffer-Grimson approach. Mei el al [4] presented an al-

gorithm to classify vehicles in IR video by the integration

of detection, tracking, and recognition. A simple detection

method was used prior to particle filtering for tracking and

classification. However, their detection method is vulnerable
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to environmental disturbances such as background clutter.

The wavelet transform is used to suppress the background

in [5], and the threshold is chosen to maximize inter-class

variance to achieve better detection, which is suitable for

long-range small IR target detection. Zhang et al [6] used

morphological operators to estimate the background and in-

troduce target energy features to detect IR targets, which can

be applied to long-range targets with a constant background,

e.g., sea or sky, but is not useful for IR video with close

targets.

Since no solution for detection and tracking exists for

close-view outdoor IR video, where environmental distur-

bances are significant, we propose a new tracking-based

detection approach for the detection and tracking of dim IR

targets. The core algorithm divides the input frame into reli-

able and unreliable regions automatically, which increases its

sensitivity to detecting small and dim IR targets, and greatly

reduces false alarms. A tracking-based detection scheme

is used to recognize true moving targets and exclude those

falsely detected blobs caused by noise, luminance changes,

or heavy background clutter. A modified nearest-neighbor

data association method is used for tracking. Excellent per-

formance with a very low false alarm rate, high sensitivity

of detection, and consistent tracking are demonstrated with

real-world outdoor IR video sequences.

The remainder of this paper is organized as follows: Sec-

tion II presents the background model; Section III provides a

detailed description of the tracking-based detection and track-

ing algorithm; experimental results are presented in Section

IV; and a conclusion is given in Section V.

2. BACKGROUND MODEL

Since we assume a static IR camera, it is natural to use frame

differencing for detecting moving targets. However, frame

differencing between consecutive frames itself cannot pro-

vide satisfactory results when the target of interest does not

show significant movement in the direction parallel with the

image plane of the camera. If a background image without

any moving targets is available, one can get a better result

by computing the difference with the current frame. Rather

than use either consecutive frame differencing or background

differencing only, we use both methods concurrently because
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they provide complementary results. The consecutive frame

differencing approach can capture the real-time change be-

tween frames, while background differencing gives the nec-

essary complement when a moving target stops moving or

moves very slowly during the detection and tracking.

In outdoor environments, many false alarms occur in ar-

eas with swaying trees, flowing water, and sharp edges. If we

can identify these areas and mark them as unreliable regions,

we can simultaneously improve the detection accuracy and

lower the false alarm rate. First, a rough training procedure

is performed to obtain a smoothed background and pixel vari-

ance. Secondly, a refining process is applied over the differ-

ence image to find more unreliable regions. Assuming there

are no moving targets during the training interval, any devia-

tions will result from environmental factors. A moving win-

dow represented by equations (1) and (2) is used to update the

background and pixel variance adaptively with time:

Bt = (1 − α)Bt−1 + αIt(i, j) (1)

δt = sqrt((1 − β)δ2
t + β(It(i, j) − μt)2). (2)

(a) Trees: original frame (b) Trees: after edge and close

Fig. 1. Example: “trees” pattern.

The above procedure is comparable to true time averaging

and is more suitable for real-time applications. Following the

rough training process, areas with a large pixel variance are

marked as unreliable regions. In the refining process, a differ-

ence image is obtained by a combination of consecutive frame

differencing and frame differencing with the trained back-

ground. Morphologic edge and close are taken over the entire

difference image to produce a binary image. When there are

environmental disturbances, large errors are generated in the

difference image. Accordingly, some patterns can be clearly

identified on the binary image. These areas will be marked

as unreliable regions as well. An example of a “trees” pat-

tern is shown in Figure 1. When converting the difference

image into a binary image, one can choose direct threshold or

edge operators. The benefit of the edge operator is that it can

capture structural information. For example, the close opera-

tor connects isolated parts into continuous regions. Thus, the

unreliable region’s structure is readily identified. A mask is

generated to represent the unreliable regions identified from

both the rough training and refining processes. The aforemen-

tioned process is described by Algorithm 1.

Algorithm 1 Unreliable region detection

Stage 1: Rough training
with frame It, where t = 1 · · · t0

Obtain B(i, j) and δ(i, j) by equations (1) and (2)

Stage 2: Refining
μh = 1

M∗N

∑
i,j δ(i, j), δh = sqrt( 1

M∗N

∑
i,j (δ(i, j) − μh)2),

Mask = 0M×N , M and N are image height and width respectively,

If |δ(i, j) − μh| ≥ γ ∗ δh, Mask(i, j) = 1,

where γ is a constant, 3 is taken here,

for frame It(i, j), t = t0 + 1 · · · t1,

Dt(i, j) = (It(i, j) − It−2(i, j) + It(i, j) − B(i, j))/2,

Get edge image Edge(i, j) from Dt(i, j) by ”canny” method,

with thresholds 0.1 and 0.25,

Morphologic close, structuring element ’disk’ of radius r,

If
∑

k S(k) > η ∗ M ∗ N , t = t + 1 go to next frame,

where S(k) is a connected region, η is a constant, 0.8 is taken here,

otherwise,Mask = Mask ∪ S(1) ∪ · · · ∪ S(K),

Merge all K regions into Mask.

end

3. TRACKING-BASED DETECTION AND
TRACKING

As stated previously, the sensor noise and large background

clutter in uncontrolled outdoor environments (such as trees,

grasses, or rivers) are the main sources of false alarms if the

binary image is generated directly from the difference image.

Even with a good background model, one cannot ensure that

all false alarms are suppressed. Accordingly, we propose a

tracking-based detection and tracking scheme to suppress the

false alarms. Its main idea can be summarized as follows:

Prior to being claimed as a new target, a candidate is put into

a buffered queue until its motion pattern complies with prede-

fined criteria. After a difference image is extracted from each

input video frame, a reliable-region mask is applied to remove

the unreliable regions. Rather than use the raw difference im-

age, a gradient image is generated. Because the gradient is

the derivative of the raw difference image, it is invariant to

global luminance change and is more sensitive than the raw

difference image in capturing the dim targets in IR video. To

remove the artificial edges that remain following the removal

of the unreliable regions, a shrink mask generated from the

reliable-region mask is overlaid on the gradient image. As

shown in Figure 2, the unreliable region is erased and the dim

small target is identified clearly. The detailed procedure is

presented in Algorithm 2.

Once the candidates are detected with the above process,

the tracking-based detection and tracking are employed as fol-

lows: First, newly detected candidates in the current frame try

to set up associations with targets in a true target pool. If no

association is found, they try to set up associations with tar-

gets in a potential target pool. If still no association exists, the

candidates are put into a potential target pool as new potential

targets. A vitality counter is assigned to each candidate in the

potential target pool. If a candidate in the potential target pool

is updated, its corresponding vitality counter is increased as

well; otherwise, its vitality counter decreases. If an object’s
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Algorithm 2 Detect candidates

With background model B(i, j) and reliable-region mask Mask(i, j)
ready,

for frame It(i, j), t = t1 + 1 to T ,

L = 0M×N ,

Dt(i, j) = (It(i, j) − It−2(i, j) + It(i, j) − B(i, j))/2,

Morphologic edge: Edge(i, j) from Dt(i, j) by ”canny” method,

with low and high thresholds 0.1 and 0.25 respectively,

Morphologic:close, structuring element ’disk’ of radius r,

If
∑

k S(k) > η ∗ M ∗ N , t = t + 1 go to next frame,

where S(k) is the area of connected regions,

η is a constant, 0.8 is taken here,

Apply reliable-region mask, D̄t = Dt ∗ Mask,

Get gradient of D̄ ⇒ Gt,

Get the shrink mask V̄ from Mask, then Ḡt = Gt ∗ V̄ ,

mG = (1/M ∗ N)
∑

Ḡt,

σG = sqrt(1/(M ∗ N − 1)
∑

(Ḡt − mG)2),

If
∣∣Ḡt − mg

∣∣ ≥ λ ∗ σG, L(i, j) = 1.

Detected candidates=connected regions of L(i, j),

end

vitality counter decreases to zero, it will be removed from

the potential target pool. If a target’s vitality counter reaches

an upper threshold, its identity is checked to decide whether

or not it is a true moving object. If a candidate passes the

testing, it will be put into the true target pool. For the tar-

gets in the true target pool, they will be compared with the

newly detected targets to decide if an association exists. If

an association exists, the target’s vitality counter is increased;

otherwise, the counter decreases. When a true target’s vitality

counter reaches zero, it will be removed from the true tar-

get pool. If a candidate is a true moving object, it is able to

maintain its appearance and moving pattern consistently for

at least some period of time. The temporary occurrence of a

false alarm won’t last long enough to be classified as a true

target. Thus, a comprehensive detection and tracking system

is formed, which can deal with newly birthed object, tracking,

and disappearing objects in a consistent way.

(a) Difference image of reliable

region

(b) Detected target using gradi-

ent image

Fig. 2. Detect possible candidates.

In the process of data association, due to the large noise

content in IR video, there are often multiple candidates in the

neighboring region of a true object. Unlike video collected by

EO sensors, there is no stable target appearance model in IR

video. Additionally, the objects are often occluded by natural

objects such as trees, buildings, and rocks. All of these factors

make it difficult to extract stable and reliable features. Ac-

cordingly, we propose a multiple feature vector weighted by

corresponding long-term statistics. In our system, we use six

features including velocity direction and magnitude, bound-

ing box width and height, mean of object intensity, and tex-

ture. We use the following method to weight different features

automatically. The distance measure between a target and a

candidate is computed using Equation (3):

S = (1/W )
∑

i

wi ∗ exp(−0.5 ∗ (Δxi)2/σ2
i ), (3)

where wi = σ2
0i

(Δxi)2+σ2
i

is a weighting factor, W =
∑

i wi is a

normalization factor, σ0i is the predefined standard deviation,

σi is the current standard deviation, and Δxi is the relative

difference for the ith feature: Δxi = xt−1−xt

max(xt−1−xt)
. If the

computed score, S, is greater than a threshold, S0, but less

than a higher threshold, S1, the candidate is associated with

the object, but the appearance model, bounding box, mean,

and texture are not updated. If the score is higher than S1,

the appearance model is updated, and each feature’s current

variance is updated as well using equation (4):

σi = sqrt((1 − β) ∗ σ2
i + β ∗ (Δxi)2). (4)

The above weighting method benefits the reliable fea-

tures while suppressing the unreliable ones. The output can

be regarded as a probability and can be used within any

probability-based framework. Since all the features should

have zero mean according to our design and assumptions,

if a feature is stable, σ0i will be close to σi, and Δxi will

be close to zero. That feature’s weighting, wi, will be close

to one. Similarly, if one feature becomes unstable, its cur-

rent variance will increase significantly with time. Thus,

both (Δxi)2 and σi become large, and the weighting factor,

wi, will be close to zero. That feature’s importance will be

reduced greatly from the total measurement.

To identify whether a target in the potential target pool is

a true moving target, a motion pattern analysis is performed.

False alarms tend to have positions that are randomly dis-

tributed, while true moving objects are statistically stable

along some path. A fast pattern analysis computes the aver-

age angle change of the moving target and the average moving

distance. If the average turning angle is smaller than a thresh-

old, θ0, and the moving distance is greater than a threshold,

d0, then we perform a 3rd-order polynomial curve fitting and

find the correlation coefficient between the observed position

and the estimated position. A 1st-order autocorrelation coef-

ficient is also computed. If both correlation coefficients are

greater than a threshold, c0, it is recognized as a true object

and put into the true target pool for continued tracking. An

example of path fitting for a true moving target is shown in

Figure 3.
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Fig. 3. Motion pattern example.

4. EXPERIMENTAL RESULTS

In this section, we present the implementation and test results

of the proposed system. The video sequences were generated

by an unattended IR camera capturing various outdoor scenes.

All sequences have a frame size of 640 × 480 pixels and a

frame rate of 10 frames per second (fps). The system per-

forms very well on all eleven video sequences. Due to space

limitations, we present the results for only three sequences.

(a) Tracking result with

“trees” sequence

(b) Tracking result in “mt04”

sequence

(c) Tracking result in “mt05”

sequence

Fig. 4. Tracking examples.

A median filter was applied to reduce the noise, and 30

seconds of video was used for rough training and refining.

The tracking paths (yellow) are overlaid over the background

image to show the results clearly. Figure 4(a) is taken in dense

woods, where the foliage and tall grass occupy a large por-

tion of the scene. A person enters the scene from the corner

and crosses the woods through a curved path. The person is

often partially or fully occluded by the woods or large sur-

face bumps. Although regions close to the black sky and tall

grass cannot be identified as unreliable regions, and quite a

few blobs are detected as potential candidates, our algorithm

can differentiate them from the true moving target without

any false alarms. Figure 4(b) is taken by a camera hidden

in the tall grass. The grass sways in the wind and creates

pronounced disturbances. The tracking subject, a motorcy-

clist, is detected quickly and tracked accurately for the en-

tire sequence duration with no false alarms. Figure 4(c) is

an IR video sequence taken in front of rocky area during the

daylight. The strong and gusty wind enhances the distur-

bances from the swaying trees and grass. The tracking sub-

ject is a person who crosses the rocky area. He has frequent

changes in his motion pattern and shape when standing, walk-

ing, climbing, stooping, and jumping. The system accurately

tracks the subject until he crosses the entire rocky area and

disappears from view.

5. CONCLUSIONS

We have presented a novel video tracking system for outdoor

infrared video applications. Region masking and buffered

target detection and tracking processes were introduced to

dramatically reduce the number of false alarms with com-

plex background clutter. Performance results were presented

with real-world outdoor IR video sequences. It was shown

that excellent target detection and tracking could be obtained

while simultaneously rejecting the false alarms due to ex-

treme background motion clutter.
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