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ABSTRACT 
 
Spectrometers that provide spectral decomposition at 
different locations of a scene are required in many 
applications. A simple device based on a multi-channel 
digital camera system has recently been developed to 
provide pixel level spectrum estimation. The current 
spectrum estimation algorithm for the device is based on 
PCA analysis. This paper develops a new estimation 
approach in an optimization framework that is based on a 
model of the optical path. The new method provides better 
spectrum estimates. Theoretical development and 
experimental examples are provided.  
 

Index Terms— Spectrometry, Principal Component 
Analysis. 
 

1. INTRODUCTION 
 
Spot-wise measurement of spectra as a function of the 
visible wavelengths is required in many industrial and 
graphic applications. An example is that of color 
reproduction in images for artwork preservation. A six-
channel digital camera system  consisting of a R,G,B 
color filter array (CFA) sensor and two absorption 
(colored) filters has recently been developed for this 
application, As shown in Figure.1, the RGB filter array 
output is recorded twice, once with Filter A in the optical 
path and once with Filter B. Thus for each pixel in the 
image of the scene, a six dimensional vector is recorded. 
Compared to traditional high resolution imaging 
spectrometers, this system is simpler, lower in cost, and 
easier to use. Methods have been developed to estimate 
scene spectra from the measured digital camera signals in 
this system [1],[2],[3].  Most of these reflectance 
reconstruction techniques are based on what is known as 
learning-based indirection reconstruction, in which a 
calibration target is employed to build a transform matrix 
to map the recorded six- dimensional vector to a spectrum 
profile. The spectrum itself is typically sampled at 31 
wavelengths and thus the matrix maps a 6-dimensional 
space to a 31-dimensional space.  As we explain in the 
following sections, this approach has problems.  We 
therefore propose a new computation model and a 
reconstruction algorithm which combines physical 

constraints and optimization resulting in a transform 
matrix that provides better estimates of the spectra.  
 

2. PHYSICAL MODEL  
Suppose the spectrum of the illuminating light source is 
represented by a (31x31) diagonal illumination spectral 
power distribution matrix 1 2 31, , ,P diag p p p  
and the reflectance of the object at these different 
wavelengths is represented by a vector 

1 2, 31[ , , ] 'r r rr . Then the spectrum of the reflected 
light from the object is given by  
 PL r  (1) 
Let 1 2 31, , ,fA A A AF diag f f f  and 

1 2 31, , ,fB B B BF diag f f f  be the diagonal 31x31 
spectra transmittance matrixes of filters A and B in 
Figure.1. That is, fAF L and fBF L  are the output spectra 
of filters A and B respectively.  We form the 62x31 matrix 
Ff as 

 fA
f

fB

F
F

F
 (2) 

The output spectra of filters A and B are each transformed 
to representative RGB values by multiplying them by the 
transpose of a 31x3 spectral sensitivity matrix CF . Let 

'
1 2 3, ,d d d and 

'
4 5 6, ,d d d be the corresponding RGB 

vectors. The camera spectral sensitivity is characterized as 
a 6 x62 matrix FCS  

 
'

'

0
0
C

CS
C

F
F

F
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Denoting 
'

1 2 3 4 5 6, , , , ,d d d d d dd , we have, 

 Fd r  (4) 
where F is  the 3x31  system filter matrix given by 
 ( )CS fF F F P  (5) 
The key fact to note from (4) is that the transformation 
from the 31-dimensional reflectance to the 6-dimensional 
measurement vector is linear. This model works well with 
normal white light illumination. 
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Figure.1 System diagram 

 
 2.2. Inverse problem 
The problem of interest here is that of mapping an 
observed d to a reflectance vector r. This is a 6-
dimensional to 31-dimensional mapping and hence there 
is no unique solution.    Use of principal component 
analysis (PCA) has been proposed as follows.  Suppose 
the source spectra form a set of N (31-dimensional) 
vectors, which are recorded in columns of a matrix RT, 
and the corresponding 6-dimensional vectors from the 
camera are recorded in columns of a matrix DT, where the 
subscript T stands for training set targets. Currently a 
GretagMacbeth ColorChecker DC, which contains 232 
color patches, is our calibration source leading to N=232. 
To reduce the dimensionality, PCA is employed and the 
original training set reflectance spectra are reconstructed 
as, 

 ˆ
E TR EA  (6) 

where ER̂  is the (31xN) estimated reflectance spectra 
matrix , E is the (31x6) matrix whose columns are the first 
six eigenvectors of RT in order of the magnitude of their 
eigenvalues resulting from the PCA of the RT matrix,  and 

'T TA E R is a 6xN matrix whose Nth column is the  
projection of Nth column of RT onto the columns of E.  
To establish connections between the measured digital 
signals and the projections of spectra onto training set 
eigenvectors, a 6x6 transformation matrix SM is 
generated from the training set data to satisfy 
 
 T s TA M D  (7) 
  

 
 
Then SM  could be solved as shown in Eq.(8) ,  

 †
S T TM A D  (8) 

The operation †  is the Moore-Penrose pseudo-inverse. 
Once Ms is computed from the training set by a 
generalized inverse matrix calculation, it could be applied 
to other measured camera signals DM to estimate the 
corresponding eigenvector scalars AM, where subscript M 
stands for measured target. Concomitantly, from equation 

(6) and (7), the estimated spectral reflectance ˆ
MR  would 

be: 

 ˆ
M s MR EM D  (9) 

 
3. NEW ALGORITHM INCORPORATING 

OPTICAL PATH MODEL 
 
The pseudo-inverse approach introduced in the previous 
section does not incorporate the camera model. It is based 
on the premise that, since the forward transformation from 
object to digitized signal is linear, the inverse of this 
transformation is also linear and hence the pseudo-inverse 
solution. On the face of it this appears ad hoc. However, 
an optimization interpretation can be attached to the 
procedure as follows. 

The mean squared-error (MSE) of the training set can be 
expressed as: 
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(10) 

where we have used the fact that 'E E I  since E is the 
eigenvector matrix. To solve the optimized MS for RMSE, 
we differentiate the above with respect to MS and set the 
result to the null matrix. It must be noted that the form of 

the MSE is different from the form 
2Ay x  that is 

usually encountered in optimization problems. Proceeding 
with the optimization, 
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 (11) 

The last result in Equation (11) is identical to that in 
Equation (8), indicating that the pseudo-inverse solution is 
the optimum solution to minimizing the MSE in (10).  

However, there are problems with the approach. One 
problem is that a six-dimensional space is being mapped 
to a six-dimensional subspace of a 31-dimesnional space. 
Consequently, there is a good chance that the spectrum 
estimated from the camera measurement is substantially 
different from the true spectrum. 

Another problem is that the system parameters are 
completely ignored. In fact, for the obtained solution to be 
tenable, some of the transmittance values for the system 
should be negative, which is a violation of the physics of 
the set up.  Given SM , the matrix F of Equation (4) can 
be obtained (using Eqs. 1),(2),(3)) as follows: 
 

† †

†

'
'
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(12) 

 
As shown in Figure 2, various values of the F matrix are 
negative for MS obtained with current approach. We now 
propose a new approach for solving MS that takes the 
required positivity of elements of F into account. 

Eq. (12) shows that if camera spectral sensitivities matrix 
Fc, the spectral transmittances matrix Ff of filters, and the 
diagonal illumination spectral power distribution matrix 

P, could all be precisely measured, even in the absence of 
digital image signals of calibration target, initial MS could 
be generated with only the knowledge of the reflectance 
spectra of calibration target. It also shows that the general 
filter matrix F could be estimated from MS and E. While 
the general filter matrix F could be regarded as the whole 
system filter for the target spectral reflectance factor, the 
physical constraint for F is that all the components of F 
should be non-negative.  
 

 
Figure.2 Left: The system filters response of pseudo-

inverse approach. Right: The system filters response of 
the non-linear constrained optimization approach.  

 
  
We formulate a constrained optimization problem as  

2*

2

†

ˆmin arg ( )

min arg ( )

subject to( ) ' 0

S

S

S M T T

M T S T

S

M R R

R EM D

M E

 (13) 

For initial value of Ms , we can choose the result from Eq. 
(8). The non-linear optimization can use sequential 
quadratic programming (SQP) method.  
 

4. EXPERIMENTAL RESULTS 
 
We first compare the values of elements of the system 
filter matrix F obtained with the paper’s method to the 
previous pseudo-inverse approach.  With the *

SM  
obtained from Eq.(13), the corresponding F was 
calculated using Eq.(12) and its rows were plotted (plot on 
right in Figure 2). Compared to the pseudo-inverse 
approach, the system filters responses after the non-linear 
constrained optimization are now all positive. 

The experimental results have also shown that the new 
approach with physical constraints provides improved 
estimates of the source spectra. Figure 3 compares spectra 
estimated with the pseudo-inverse method and the new 
method with ground-truth spectra measured using a high 
resolution spectrometer. The estimated spectra calculated 
from the new approach is closer to the true spectra than 
the ones obtained from the old approach. 
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Figure.3 Graph of estimated and true Spectra 

 
As another evaluation of performance of this method 
relative to the pseudo-inverse approach, color 
reproduction metrics such as color difference [4] and 
metamerism index [5] were also calculated. First, color 
coordinates are calculated by integrating the spectra of 
illumination and object reflectance with human color 
matching functions over visible wavelength, therefore, 
even a very small change in the spectra might lead to a big 
difference in color perception, which could be gauged in 
CIEDE2000 color difference equation. Different object 
spectra may appear to trigger the same color perception 
under one illumination condition. However if the 
illumination changes, these spectra may show large color 
difference. This phenomena is called metamerism, and 
can be measured with the metamerism index equation. 
Using GretagMacbeth ColorChecker DC with 232 
effective color patches as training set, the two spectral 
reflectance factor estimation approaches, without 
constraint, and with constraint, were carried out on the 24 
color patches of the verification GretagMacbeth 
ColorChecker SG target. The results are shown as below 
in Table. I 
 
Table.I Performance Comparison for Color Checker SG 
spectral reflectance factor estimation. E00 is the color 
difference. MSI is the Metamerism Index with lighting 
source changing  from the D65 lighting source to A 
lighting source 
COLOR CHECKER SG MEAN STD MAX MIN 

Pseudo-
inverse 

approach 

E00 1.97 1.28 6.19 0.36 

MSI 0.62 0.42 1.81 0.08 

Non-linear 
optimization 

with 
constraint. 

E00 1.78 1.07 5.78 0.16 

MSI 0.53 0.52 2.04 0.04 

 
 
The color difference and metamerism performance results 
in Table.I proved that the new approach provides better 
performance in color reproduction. t-tests have also been 
carried out on all the difference between these two 
methods. All the differences have failed the null 
hypothesis that the two methods yield statistically 
identical results at the 5% significance level, which 

indicates the performance of the new approach is 
significantly improved over the old approach. 
 

5. CONCLUSIONS  
A new algorithm for spectral reflectance factor estimation 
was developed for a camera-based spectrometer. As 
shown in the paper, the motivation for the development 
came from the fact that the current algorithm does not 
constrain the solution to the physics of the optical path 
and, in fact, violates it. The optimal solution developed in 
the paper was shown not only to conform to the positivity 
condition of the system transmittance but also to provide 
spectrum reconstructions that are closer to the ground 
truth spectra. The concept has the potential to be extended 
to various application areas such as multispectral and 
hyperspectral data analysis.  
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