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ABSTRACT

Bi-static and multi-static radar requires synchronization between
transmitter(s) and receiver(s) due to their separated locations. Espe-
cially, for the target doppler estimation, the carrier frequency offset
occurred by the discord between the transmit and the receive ends
should be estimated before the processing. In this paper, the sys-
tem model for multi-static radar is provided as a similar form of
multi-input multi-output (MIMO) communication system. However,
unlike the MIMO case the frequency offset for each receiver is not
identical to each other which makes the modeling and problem com-
plicated. Based on the system model, the joint maximum likelihood
(ML) solution and the suboptimal estimation is presented for fre-
quency offset compensation. In this approximated approach, each
receiver frequency offset is decoupled to others and the computa-
tional complexity becomes extremely low while it provides reason-
able error performance for small frequency offsets and high signal
to noise ratio (SNR).

Index Terms— frequency offset, ML estimation, true time de-
lay, orthogonal sequence

1. INTRODUCTION

Bi-static and multi-static radars of which the transmitter(s) and re-
ceivers(s) are positioned apart have been studied over the recent
years. Currently, the deployment of unmanned air vehicles (UAV’s)
is making multi-static radar systems an interesting field of study.
Some advantages make the bi-/multi-static radar be attractive com-
pared to the mono-static system. Since the receivers are operated
in a passive mode, they are undetectable at a field of battle. Be-
sides, the bi-/multi-static systems have anti-stealth capability result-
ing from the different aspect angle of the transmitter and the receiver
at the target point of view. However, having the transmitter and the
receiver at different locations, synchronization between them is re-
quired to achieve appropriate performances [1]-[2]. Especially, the
carrier frequency synchronization should be guaranteed to retrieve
the doppler of the target signal. In this system, the frequency offset is
induced by the instability of oscillator or limited oscillator precision,
resulting in the inaccurate doppler frequency estimation. Therefore,
it is required to measure and compensate the frequency offset at the
receiver.

In digital communication systems, the frequency offset problem
have been dealt as an important issue by many researchers. In many
algorithms, training sequences (TSs) are used to solve this problem
easily and to achieve higher performance [3]-[6]. Unfortunately, in
the radar system, a few works have been done for this issue.
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The synchronization of the bi-/multi-static radar using reference
signal disciplined to Global Positioning System (GPS) has been in-
vestigated [7]. However, the frequency estimation without any data
support except the received signal has not been considered. This
issue is motivated from the frequency offset estimation in wireless
communication system [5]-[6].

This paper addresses two issues raised by the carrier frequency
estimation for the multi-static radar system. One is the novel system
model which explains the received data using true time delay [8] for
the coherent processing in multi-static system. This model has sim-
ilar structure to the MIMO systems. Hence, note that the MIMO
techniques, especially for frequency offset estimation, are applica-
ble to the model herein for multi-static radar systems. The other
issue is the frequency offset estimation. In this paper, based on the
proposed signal model, joint ML estimation of the channel response
and the frequency offsets is presented. Moreover, the suboptimal
scheme which requires low complexity and makes it possible to es-
timate each receiver’s offset, independently is introduced.

The remainder of this paper is organized as follows. In section 2,
the appropriate signal model is provided by introducing the true time
delay. Section 3 is occupied with ML based carrier frequency offset
estimator and the suboptimal scheme containing some approxima-
tions. Numerical examples illustrating the performance of the intro-
duced estimators are presented in Section 4, and some conclusions
and suggestions for future directions are offered in Section 5.

2. SYSTEMMODEL

In multi-static radar systems,Nt transmitters andNr receivers which
are located apart from one another are considered. Since a multi-
static radar can be treated as nothing but the extended version of a
bi-static system, at first, it is essential to look into a bi-static radar
system.

The illuminated signal from the transmitter is represented as

x(t) = u(t)ej2πf0t+jφ, (1)

where u(t) is the complex envelope of a baseband signal including
signal amplitude, f0 is the carrier frequency and φ, uniformly dis-
tributed on [0 2π), is the random phase. At the receiver site, the
target echo including doppler effect is

y(t) = A(t)u(t − τTX − τRX)ej2π(f0+fd)(t−τT X−τRX )+jφ. (2)

where A(t) is the echo amplitude, τTX and τRX are traverse times
from a transmitter to a target and from a target to a receiver, respec-
tively. The overall delay from a transmitter to a receiver via a target
can be represented as τ = τTX + τRX , fd is the doppler frequency
induced by transmitter, receiver, and the target velocities and λ0 is
the wavelength corresponding to the carrier frequency f0.
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After down-conversion with the discorded frequency f̃0 = f0 −
Δf0 which has the frequency offset Δf0 at the receiver end, the
signal becomes

y(t) = A(t)u(t − τ)ej2π(Δf0+fd)(t−τ)+jφ. (3)

Based on bi-static radar signal model, extension to the multi-
static case is easy to achieve. The m-th receiver signal which is
transmitted from n-th transmitter is denoted as

ymn(t) = Amn(t)un(t − τmn)ej2π(Δf0+fd,mn)(t−τmn)+jφ

n = 1, 2, · · · , Nt m = 1, 2, · · · , Nr. (4)

where the subscript used herein denotes the related site for parame-
ters,m is the receiver and n is the transmitter part, respectively.

In the multi-static system, all the data received from each re-
ceiver are combined coherently at the center location to detect target
and estimate parameters. For coherent data processing at a time, it is
necessary to introduce the true time delay concept [8].

Assume that all transmitters and receivers are focusing at the
look-point (Xt, Yt, Zt). When we let the n-th transmitter position
be (Xn, Yn, Zn), the distance of the look point to the n-th illumina-
tor is denoted asDnt =

√
(Xn − Xt)2 + (Yn − Yt)2 + (Zn − Zt)2.

The true time delay between these two points is presented as

ΔTnt =
max(Dnt) − Dnt

c
, (5)

where c is the speed of light and max(Dnt) means the maximum
distance among the distances fromNt transmitters to the look point.
To make all transmit signals reach to the look point at a same time,
the transmitting time of each transmitter is modified using the true
time delay. As a result, at the look point, illuminated signals from all
transmitters are regarded as if those are from multiple antennas of a
single transmitter.

Similarly,Dtm =
√

(Xm − Xt)2 + (Ym − Yt)2 + (Zm − Zt)2

is the distance of the look point to them-th receiver at (Xm, Ym, Zm)
andΔTtm = (max(Dtm) − Dtm) /c is the true time delay.

When the m-th receiver signal is sampled at a time t = kTs −
ΔTm where k is the time index and Ts is the sampling interval, the
received data can be processed at a same time. This sampling pro-
cess makes the signals arrived at each receiver at each different time,
be the responses of the target started from the look point at a same
time. After modification of transmit and sampling time, there is no
need to consider the effect of distributed positions among transmit-
ters or among receivers. It can be treated as a bi-static radar which
has multiple antennas at both transmitter and the receiver. This mod-
ification is based on the assumption of the knowledge of the locations
at receivers, transmitters and the look point.

The transmitted signal at time l takes the form as (6) for notation
simplicity.

xl = [xl(1)xl(2) · · ·xl(Nt)]
T , (6)

where xl(n), l = 0, 1, · · · , L− 1 is the complex baseband signal of
the n-th transmitter, L is the length of the code in one pulse and (·)T

is a vector transposition.
The random amplitude Amn(t) in (4) is obtained directly from

the radar equation. The only random parameter in radar equation
is a radar cross section. When we assume the target is modeled as
swerling I or swerling III (this assumption will be removed later),
the random amplitude can be treated as a deterministic constant in
a coherent processing interval (CPI). From this assumption, the re-
ceived signal is represented by matrix form using Nr × Nt channel

matrix H with entries hmn which is the amplitude of the sampled
target signal from the n-th transmitter to them-th receiver.

When transmitters are frequency synchronized perfectly with
each other but not with receivers, frequency offset of the receiver
is different each other. The received signal with frequency offset
Δfm at them-th receiver at time l is given by

yl(m) = ej2π(Δfm)lTs

Nt∑
n=1

hmnxl(n)ej2π(Δfd,mn)lTs + vl(m) (7)

where vl(m) is the zero-mean complex Gaussian noise with variance
σ2

v = E|vl(m)|2.
For simplicity in frequency offset estimation, the doppler fre-

quency effect induced by transmitter, receiver, and target motions is
assumed to be irrelevant to the subject. Under this condition, the
overall received signals at time l can be written more compactly us-
ing (8).

yl = FlHxl + vl, 0 ≤ l ≤ L − 1. (8)

where F is a diagonal matrix

F = diag(ej2πΔf1Ts , · · · , ej2πΔfNr Ts). (9)

It has a similar form to the MIMO wireless digital communica-
tion system model [3]-[6]. However, in multi-static radar system,
the frequency offset for each receiver is different each other whereas
the MIMO system has same carrier frequency offset for all receiver
antennas. Hence, the modeling is complicated and not concise com-
pared to the MIMO system.

The overall received signal which is processed coherently, can
be represented as a matrix form by stacking all snapshot vectors as a
tall column

y = FΣHΣx + v, (10)

where FΣ andHΣ are block diagonal matrices

FΣ = diag(I,F, · · · ,FL−1),

HΣ = diag(H,H, · · · ,H), (11)

and y, v are theNrL×1 stacked snapshot vectors, x is theNtL×1
also stacked transmitted code (training sequence).

In this paper, each transmitter uses its own code which is orthog-
onal to each other. This code is transmitted through just one pulse for
frequency estimation, hence also swerling II and IV modeled target
amplitude can be treated as constant through all process. The sam-
pling interval Ts is determined by the pulse duration over the length
of the code. The length of the code is equivalent to the number of
snapshots.

Transmitted codes are known at the receiver, butH is not known
and should be estimated jointly with the frequency offsetsΔf1,Δf2,
· · · ,ΔfNr .

3. FREQUENCY-OFFSET ESTIMATION

3.1. ML based estimation

In radar systems, the received signal contains interference plus noise
signal instead of additive white noise only signal. In general, the
interference plus noise signal v is assumed to be zero-mean Gaus-
sian distributed with the covariance matrix R. In this paper , to
make problem simple, the covariance matrix R is assumed to be
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σ2
vI, where I is a NrL × NrL identity matrix. Thus, for a givenH
and Δf1, Δf2, · · · , ΔfNr , the received vector y is Gaussian with
the mean FΣHΣx and covariance matrix σ2

vI.
The likelihood function for the parameter (H,Δf1, Δf2, · · · , ΔfNr )
is given by

Λ(y| H̃, Δf̃1, Δf̃2, · · · , Δf̃Nr )

= [y − F̃ΣH̃Σx]H [y − F̃ΣH̃Σx], (12)

where {H̃, Δf̃1, Δf̃2, · · · , Δf̃Nr} is the set of candidate values of
H and Δf1, Δf2, · · · , ΔfNr and (·)H denotes the complex con-
jugate transposition. The candidate set which makes the likelihood
function of (12) to be a minimum is the joint ML estimate ofH and
Δf1, Δf2, · · · , ΔfNr .

For arbitrary frequency offsets, the estimate Ĥ which minimize
Λ(y|H̃, Δf̃1, Δf̃2, · · · , Δf̃Nr ) is given by

Ĥ = [y0x
H
0 + FHy1x

H
1 + · · · + (FL−1)HyL−1x

H
L−1]. (13)

Substituting Ĥ to (12) and varying candidate values of frequency
offsets, it is found that minimizing (12) is equivalent to maximizing
(14)

Λ(F̃) = Λ(Δf̃1, Δf̃2, · · · , Δf̃Nr )

= Re

[
L−1∑
b=1

L−1−b∑
a=0

(xH
a xa+b)y

H
a+bF̃

bya

]
. (14)

From(14), the estimator for frequency offsets is obtained by

f̂ = arg max
f̃

{
Re

[
L−1∑
b=1

L−1−b∑
a=0

(xH
a xa+b)y

H
a+bF̃

bya

]}
(15)

where f = [Δf1, Δf2, · · · , ΔfNr ]T .
The ML estimator (15) gives optimal performances, but requires

grid search in the Nr dimensional space. The number of examined
grid points increases exponentially with respect to the number of
parameters, Nr . Therefore, the computational load to estimate fre-
quency offsets is extremely high in this system.

3.2. Approximated suboptimal estimation using Periodic andOr-
thogonal TSs

To cope with computation load problem, the suboptimal estimation
scheme should be needed. In this subsection, approximated ML-
based estimation is proposed using periodic and orthogonal codes.

In the suboptimal scheme, to decouple the one receiver frequency
from other frequencies, the partial derivatives are used although the
solution point is not a unique stationary point. In(15), the estimated
f̂ is the maximum point of the likelihood function Λ(f̃) of (14). It is
obvious that f̂ is the stationary point. If we take the partial deriva-
tives of Λ(f̃) with respect to Δf̃m and set the result equal to zero at
this pointΔf̂m,m = 1, 2, · · · , Nr

Im

{
L−1∑
b=1

L−1−b∑
a=0

b(xH
a xa+b)y

∗
a+b(m)ya(m)ej2πΔf̂mbTs

}
= 0.

(16)

For the proposal of the low computational approach, the periodic
orthogonal sequences as transmitted codes is introduced. In other

words, the rearranged sequence X = [x0,x1, · · · ,xL−1] is com-
posed of identical orthogonal submatrices of size Nt × Nt

X = [C C · · · C], (17)

where C is Nt × Nt orthogonal matrix. For the periodic orthogo-
nal codes, xH

a xa+b is 1 if b = Nt, 2Nt, · · · , (L/Nt − 1)Nt and 0
otherwise. Using this fact, (16)is approximated as

Im

{
[

L−1∑
b=1

L−1−b∑
a=0

b(xH
a xa+b)y

∗
a+b(m)ya(m)]ejπΔf̂mLTs

}
� 0

(18)

for small normalized frequency offset ΔfmTs and high SNR. The
frequency offset estimator obtained by (18) is

Δf̂m�− 1

πLTs

{
L−1∑
b=1

L−1−b∑
a=0

b(xH
a xa+b)y

∗
a+b(m)ya(m)

}
.(19)

As shown in (19), the estimator is composed of products of
(xH

a xa+b) and y∗
a+b(m)ya(m). When (xH

a xa+b) is precomputed at
each receiver, the approximated scheme requires less computational
load compared to the ML estimator. Moreover, in (19), the estimator
for each receiver’s frequency offset is computed using known trans-
mitted signal and only the own received sinal. This makes it possible
to estimate frequency offset at each receiver site independently be-
fore the data gathering for the coherent processing whereas in the
ML estimation scheme all frequency offsets should be found simul-
taneously within Nt dimensional grid.

For small normalized frequency and high SNR, (18) is almost
equivalent to (16). This means the approximated approach nearly
achieves the optimal ML performance except the separation error.
In this approach, the acquisition range is related to the length of the
used code

|Δf | <
1

LTs
. (20)

Unless the true frequency offset is confined within this interval, the
suboptimal approach gives ambiguous results. When the number
of snapshots increases, the error performance of the estimation is
getting better but the detectable frequency offset range is limited.

4. SIMULATION RESULTS

In this section, the simulation results are shown to illustrate the per-
formances of the frequency offset finding schemes. In overall nu-
merical examples, two transmitters and two receivers (i.e., Nt = 2,
Nr = 2) system are considered. The transmitted periodic orthogo-
nal sequence is composed of the following orthogonal matrix.

C =

[
1 1
1 −1

]
. (21)

Fig.1 shows the average estimates obtained by suboptimal ap-
proach versus normalized frequency offset. This shows the perfor-
mance of the algorithm and the ambiguous characteristic. In this ex-
ample, SNR=20dB and L=20 are used. As shown in this result, the
acquisition region is determined by the number of snapshots, i.e.,
|ΔfTs| < 1/20.
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Fig. 1. Average frequency estimates of the approximated scheme
versusΔf1Ts for L=20

The next simulation depicts the dependency of the error perfor-
mance on the number of snapshots. Fig.2 (a) gives the standard de-
viation of errors {E[Δf̂Ts − ΔfTs]

2}1/2 versus normalized fre-
quency offset with two observation length L=10 and L=20. This
denotes the larger number of snapshots induces the smaller errors
close to the ML level within its acquisition region. However, as the
frequency offset goes to outside of the permitted region the perfor-
mance degrade appears because of the ambiguous characteristic. In
Fig.2 (b), the error behavior of the suboptimal scheme correspond-
ing to the SNR is illustrated for the various code length when the
frequency offset Δf is zero. It is obvious that the large number of
snapshot gives better performance.

The difference of the error performance between the ML and
suboptimal method is displayed in Fig. 3. In this simulation, used
code length is 10 and the true frequency offset is set to be zero. The
results show that the errors of the suboptimal scheme can not be
reduced to the ML level even if the SNR is high. The error perfor-
mance degradation is due to the separation of the estimator for each
receiver in approximated approach.

5. CONCLUSIONS

This paper presents the modeling scheme which explains the re-
ceived data for the coherent processing in multi-static system. when
the delayed transmission and sampling is employed using true time
delay multi-static signal model looks like for MIMO digital commu-
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Fig. 2. Error performance of the proposed scheme for the various
code length.
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Fig. 3. Error standard deviation corresponding to the SNR

nication systems. Based on the derived model, the frequency offset
is estimated to overcome one of the key drawback of the multi-static
radar. Joint ML solution of the channel response related to target am-
plitude and the all receiver frequency offsets is presented. Moreover,
the suboptimal scheme which requires low complexity and makes
it possible to estimate each receiver’s offset independently, is pro-
vided. The simulation results shows the performance of ML and
approximated schemes using the orthogonal sequences. The later
method has extremely smaller complexity but somewhat higher er-
ror induced by the separation effect than the ML approach. The long
term goal of this effort is the development of the algorithm to find
frequency offsets and existing doppler of target simultaneously.
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