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ABSTRACT

Controlling the polarization information in transmitted

waveforms enables improving the performance of radar sys-

tems. We consider the design of optimal polarization for the

estimation of target scattering embedded in heavy clutter. The

goal is to minimize the mean squared error of the scattering

estimation subject to an average radar pulse power constraint.

We show that such a problem is equivalent to the optimal

design of a radar sensing matrix that contains the polarization

information. We formulate the optimal design as a nonlinear

optimization problem which can be recast it in a convex form

and is thus efficiently solvable by semi-definite programming

(SDP). We compare the sensing performance of the optimally

selected polarization over the conventional approaches. Our

numerical results indicate that a significant amount of power

gain is achieved in the target scattering estimation through

such an optimal design.

Index Terms— Radar polarimetry, adaptive estimation,

scattering matrices, optimization methods

1. INTRODUCTION

Advances in digital signal processing and computing tech-

nology have resulted in the emergence of increasingly adap-

tive radar systems. It is clear that such radar systems have

more robust performance by adapting their sensing patterns

(or more specifically waveforms) to the operation scenarios

(such as target, clutter etc.). Adaptive waveform design has

attracted a lot of attention recently [1, 2, 3]. In this paper we

design the optimal waveform polarization for the estimation

of target scattering in an environment with heavy clutter. We

consider the optimal transmit and receive polarization for a

polarimetric radar by adapting to the target and clutter polari-

metric characteristics for enhanced sensing performance.

Polarimetric information of the radar targets reveals target

details such as geometrical structure, shape, reflectivity, and
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orientation. Radar polarimetry can be used not only for tar-

get classification but also for enhancing target detection and

estimation performance, i.e., resolving targets in a clutter en-

vironment [2, 4]. To obtain the target polarimetric scattering

information, polarimetric radar systems which transmit wave-

forms with both horizontal (H) and vertical (V ) orientations

have been developed and adopted in various applications [5].

Such systems alternately switch between the two orthogonal

polarizations at both the transmit and receive sides, and thus

result in four combinations of transmit and receive polariza-

tions: HH , HV , V H , and V V .

In modern radar systems, any polarization on either trans-

mission or reception can be synthesized by using the linear

combinations of the H and V components. Thus, besides the

four types of transmit/recieve combinations above, such radar

can achieve any pair of transmit/recieve polarizations. Such

flexibility greatly enhances the polarimetric sensing capabil-

ity of the radar system. An an example, the exploration of

adaptive polarization for polarimetric contrast enhancement

has been widely studied in the synthetic aperture radar imag-

ing [6, 7].

In this paper, we consider the radar waveform polariza-

tion optimization and power scheduling in the estimation of

target scattering in heavy clutter. We cast such a problem as

the optimal design of the radar sensing matrix that is deter-

mined by the radar transmit/receive polarization and wave-

form power levels. The optimal design of sensing matrix for

a linear Gaussian model was pursued in [8], which has an an-

alytical solution and can be considered as a special case of

our model when clutter is not present. Due to the coupling

of the clutter with the transmit waveforms, the resulted opti-

mization problem is highly nonlinear but can be recast as a

semi-definite programming (SDP). This enables an efficient

numerical solution which demonstrate that the optimally se-

lected polarization has a few dB power gain over the conven-

tional fixed polarization approaches.

Notation: A lower case letter (e.g., a) denotes a scalar,

a boldface/lowercase letter (e.g., a) denotes a vector, and a

boldface/uppercase letter (e.g., A) denotes a matrix. In ad-

dition, Tr(A), AT , and AH denote the trace, transpose, and

Hermitian of A respectively. The letter In denotes an identity
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matrix of size n × n. For two matrices B and C, the relation

B � C means that B − C is positive semi-definite.

2. PROBLEM FORMULATION

Consider a polarized waveform transmitted from a radar

transmitter. When the transmitted waveform encounters a

target or the clutter in the far field, another field is returned

and received by the radar receiver. The two electric fields

are related to each other by means of the target or clutter

scattering matrices [9].

Specifically we assume that the radar transmits a polar-

ized waveform s(t) =
√

Pξs(t) = [ξh, ξv]Hs(t) where ξ is

the transmit polarization vector, s(t) is the pulse shape, and

P is the transmit power. It is assumed that ||ξ|| = 1 and the

pulse has unitary energy, i.e., ||s2|| =
∫ ∞
−∞ |s(t)|2dt = 1.

In addition, we assume that the receive antenna has polariza-

tion η = [ηh, ηv]H with ||η|| = 1. After ignoring the target

Doppler shift, we obtain that the complex envelope of the re-

ceived signal at the radar receiver can be represented as [10, 2]

y(t) =
g

r2

√
P ηH(St + Sc)ξ s(t − τ) + w(t). (1)

In the above equation, St and Sc are the target and clutter

scattering matrices respectively, w(t) is the white noise pro-

cess, r is the distance from the target to the radar, τ is the

delay resulted from waveform forward and backward prop-

agation, and g is a constant depending on the radar system

characteristics such as operating frequency, permittivity and

permeability of free space, and antenna gain at the target illu-

mination angle etc.

After performing a matched filtering on (1) and a normal-

ization by absorbing the constant g/r2 into v(t), we obtain

the following observation model:

y =
√

P ηH(St + Sc)ξ + v (2)

where v is white noise with variance σ2
v . The scattering ma-

trices St and Sc are represented by 2×2 S-matrices [10, 2],

which describe completely the polarization transforming

properties of the target and clutter. We assume that they have

the following matrix representation

St =
[
st
hh st

hv

st
vh st

vv

]
, Sc =

[
sc
hh sc

hv

sc
vh sc

vv

]
. (3)

Our goal is to estimate St based on radar measurement

y which includes returns from both the target and the clutter,

which is further degraded by thermal and background noise.

For notational convenience, we convert (2) into a linear ob-

servation model by vectorizing St and St. Specifically, we

introduce

xt =
[
st
hh st

vv st
hv st

vh

]T

xc =
[
sc
hh sc

vv sc
hv sc

vh

]T

and

a(P ; ξ, η) =
√

P p(ξ, η)
def=

√
P

[
ξhηh ξvηv ξhηv ξvηh

]T
.

With the above notation, we can rewrite (2) as

y = a(P ; ξ, η)T xt + a(P ; ξ, η)T xc + v.

In addition, it is easy to see that

||p(ξ, η)||2 = ||ξ||2||η||2 = 1.

To estimate the full polarimetric information (i.e., all com-

ponent of xt), multiple pulses of different polarizations need

to be transmitted to obtain multiple measurements y. Sup-

pose there are m pulses transmitted to measure xt. We use

P (i), ξ(i), and η(i) to denote the power, transmit, and re-

ceive polarization of these pulses. The observation from these

m pulses can thus be written as

y(i) = a(P (i); ξ(i), η(i))T xt + a(P (i); ξ(i), η(i))T xc

+v(i), i = 1, 2, . . . , m. (4)

We assumed that during the period of the m pulses, both the

target scattering xt and the clutter scattering xc remain un-

changed.

Introducing vector notations y = [y1, y2, . . . , ym]T ,

A = [a1,a2, . . . ,am]T with ai
def= a(ξ(i), η(i)), and

v = [v1, v2, . . . , vm], we obtain a matrix representation of

the m measurements in (4)

y = Axt + Axc + v.

For both xt and xc, we further assume they both have a

complex Gaussian distribution with known covariance matrix

Ct and Cc respectively. The details of characterizing tar-

get/clutter scattering by their covariance matrix can be found

in [10]. It is then easy to calculate that the minimum MSE D
of estimating xt from y satisfies

D−1 = C−1
t + AH(ACcAH + σ2

vIm)−1A. (5)

We also impose P as the average power constraint on the m
transmitted signals. This leads to the following condition

m∑
i=1

||ai||2 ≤ mP.

In the form of A, the power constraint can be rewritten as

m∑
i=1

||ai||2 = tr(AAH) ≤ mP. (6)

Therefore, to choose the optimal polarization and power

scheduling to minimize the MSE of estimating St subject to
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the average power constraint P using m diversely polarized

pulses, we obtain the following optimization problem

min
A,D

tr(D)

s.t. D−1 = C−1
t + AH(ACcAH + σ2

vIm)−1A

tr(AAH) ≤ mP (7)

D � 0

The above problem is apparently neither linear nor convex

in A or D. In the next section, we reformulate the above

problem in a convex form to make it efficiently solvable.

3. CONVEX REFORMULATION

In this section we recast (7) in a convex form and then solve

it numerically using existing solvers for convex optimization

problems. Let us first introduce the following new variables

B = σ−1
v AC1/2

c

C−1
t,1 = C1/2

c C−1
t C1/2

c

D−1
1 = C1/2

c D−1C1/2
c

In terms of the new variables, (5) becomes

D−1
1 = C−1

t,1 + BH(BBH + Im)−1B. (8)

Using the relation B = σ−1
v AC1/2

c , we can also calculate

tr(AAH) = tr(σvBC−1/2
c C−H/2

c BHσv)
= σ2

v tr(BC−1BH)
= σ2

v tr(C−1BHB).

This leads to the following power constraint on B (c.f. (6)):

tr(C−1BHB) ≤ mP/σ2
v .

To further simplify (8), we apply the matrix inversion

lemma and obtain

(Im + BHB)−1 = I4 − BH
(
Im + BBH

)−1
B.

Therefore,

D−1
1 = C−1

t,1 + BH(BBH + Im)−1B

= C−1
t,1 + I4 − (I4 + BHB)−1. (9)

Notice that D−1
1 = C1/2

c D−1C1/2
c , which implies

tr(D) = tr(C1/2
c D1C

1/2
c ) = tr(D1Cc). Therefore, in

terms of D1 and B, we can recast the optimization problem

(7) as

min
B, D1

tr(D1Cc)

s.t. D−1
1 = I4 + C−1

t,1 − (I4 + BHB)−1

tr(C−1
c BHB) ≤ mP/σ2

v (10)

D1 � 0

It is then natural to introduce a positive semi-definite ma-

trix R def= BHB. We further change the first constraint (10)

into inequality1. Applying these change on (10) we obtain

min
R, D1

tr(D1Cc)

s.t. D−1
1 � I4 + C−1

t,1 − (I4 + R)−1

tr(C−1
c R) ≤ mP/σ2

v

R � 0, D1 � 0.

Introducing another auxiliary semidefinite matrix S, we can

write the first constraint equivalently as two inequalities:

D−1
1 � I4 + C−1

t,1 − S

S � (I4 + BHB)−1

By Schur’s complement, the above two inequalities can be

changed into the following convex form:

[
D1 I4

I4 I4 + C−1
t,1 − S

]
� 0

[
S I4

I4 I4 + R

]
� 0

Eventually we obtain the following convex programming

min
R,S,D1

tr(D1Cc)

s.t.
[
D1 I4

I4 I4 + C−1
t,1 − S

]
� 0

[
S I4

I4 I4 + R

]
� 0 (11)

tr(C−1
c R) ≤ mP/σ2

v

R � 0

Problem (11) is a semidefinite programming (SDP) [11].

SDP is a special class of convex optimization problem, and

therefore enjoys all the advantages of convexity. There are

well-developed numerical methods to solve a general convex

optimization problem, among which the most well known one

is the interior point method. In the numerical example, we

adopt an optimization toolbox: SeDuMi2 [12] to solve the

SDP formulated in (11).

We show a numerical example to demonstrate the advan-

tage of the polarization optimization over convectional ap-

proach with fixed H and V polarizations. In the conventional

system, the transmit polarization and receive polarization are

either H or V , i.e., ξ = [1, 0]T or [0, 1]T , and η = [1, 0]T or

1Notice that this does not change the solution since at the optimal solu-

tion, the equality holds, which can be proved by complementary slackness

theorem [11].
2SeDuMi, which stands for Self-Dual-Minimisation, is a software pack-

age that solves optimization problems over symmetric cones using the

primal-dual interior-point methods.
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[0, 1]T . With the assumption of equal power for each pulse,

this results in the following options for a(i) (rows of A):

a(c)
1 =

√
P p([1, 0]T , [1, 0]T ) =

√
P [1, 0, 0, 0]T

a(c)
2 =

√
P p([0, 1]T , [1, 0]T ) =

√
P [0, 1, 0, 0]T

a(c)
3 =

√
P p([1, 0]T , [0, 1]T ) =

√
P [0, 0, 1, 0]T (12)

a(c)
4 =

√
P p([0, 1]T , [0, 1]T ) =

√
P [0, 0, 0, 1]T

Further, we choose the following covariance matrices for
the target and clutter

Ct =⎡
⎢⎢⎣

0.14 0.05 + 0.23i 0.11 − 0.09i 0.13 + 0.05i
0.05 − 0.23i 0.44 −0.15 − 0.28i 0.13 − 0.25i
0.11 + 0.09i −0.15 + 0.28i 0.31 0.16 + 0.18i
0.13 − 0.05i 0.13 + 0.25i 0.16 − 0.18i 0.21

⎤
⎥⎥⎦

Cc =⎡
⎢⎢⎣

6.00 −1.46 − 3.97i 1.66 − 0.77i 0.01 − 1.55i
−1.46 + 3.97i 4.19 1.47 + 0.43i −1.52 + 1.25i
1.66 + 0.77i 1.47 − 0.43i 3.05 −3.55 − 1.54i
0.01 + 1.55i −1.52 − 1.25i −3.55 + 1.54i 6.89

⎤
⎥⎥⎦

Fig. 1 plots the MSE performance of estimating St based on

two schemes: (i) optimally designed a(i), and (ii) conven-

tional a(i) from (12). The signal to noise ratio (SNR) is

defined to be P/σ2
v . We plot two cases by taking m = 4

or m = 16. As can be seen, the optimally designed a(i)
based on polarization selection and power scheduling leads to

a power gain of 3–6 dBs.
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Fig. 1. MSE performance comparison for the estimation of

the scattering matrix with or without polarization optimiza-

tion.

4. CONCLUSION

We investigated the polarization optimization and power

scheduling for the estimation of a target scattering matrix in

a heavy clutter environment. An average power constraint

for radar pulses was assumed. We cast this problem as a

nonlinear optimization problem for the optimal design of a

radar sensing matrix, which is further reformulated into a

convex form and is thus numerically easily solvable. The

numerical results demonstrate that by carefully choosing the

transmit/receive polarizations and pulse power levels, clutter

interference can be efficiently suppressed.

In this work we proposed a one-step optimization to select

the optimal polarizations and power levels for all pulses. It

is expected that additional performance gain can be achieved

if such optimization is done sequentially on a pulse-by-pulse

basis by using the most currently acquired information. In ad-

dition, to make the radar polarimetric sensing more efficient,

multi-dimensional information of the incoming EM field at

the radar receiver can be simultaneously measured using, e.g.,
EM vector sensors [4]. Such a strategy will lead to additional

constraints on the design of the sensing matrix A. We will

explore these topics in our future research.
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