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ABSTRACT

Contour tracking for a single source emission is addressed
in this paper. This problem is solved by estimating the con-
tour boundary positions using a set of particle filters. The use
of Sequential Monte Carlo techniques enables the tracking to
performed when the measurements are noisy and the track-
ing results also includes the estimation uncertainty. The pro-
posed technique is illustrated for a SCIPUFF generated sin-
gle emission scenario and simulation experiments showed the
successful tracking throughout the tracking period.

Index Terms— Tracking, Distributed estimation

1. INTRODUCTION

Recent international events have clearly demonstrated the
need for a fast and accurate tracking and prediction capabil-
ity for airborne contaminant emissions. Wherever possible,
the collection of such data is done without putting personnel
in harms way. In the event of airborne contamination, the
use of UAVs to locate, detect and track such environmen-
tal data removes the operator from contact with potentially
hazardous airborne contaminants. Existing contamination
prediction systems rely on complex dispersion models which
assume limited sensor input. They also suffer from problems
of initialisation, especially with multiple sources and are
based largely on Gaussian assumptions which break down in
complex environments. In this paper, a novel algorithm for
tracking airborne contaminants based on a non-linear/non-
Gaussian technique is proposed.
Current developments in small air vehicle (SAV), and

eventually micro air vehicle (MAV), show that sensing and
tracking of airborne contaminants can be carried out dis-
tributively using sensor networks mounted on these airborne
vehicles. Other military applications of sensor networks
range from large-scale acoustic surveillance system for ocean
surveillance to small networks of unattended ground sensors
for ground target detection [1]. However, the availability of

This work forms a part of the DIF-DTC project whose funding and sup-
port is gratefully acknowledged.

low-cost sensors and communication networks has resulted
in the development of many other potential applications. One
of such application is in infrastructure security where critical
buildings and facilities such as power plants and communica-
tion centres have to be protected from potential terror attacks
[2]. Environmental and habitat sensing is an another applica-
tion of sensor networks. Environmental sensors are used to
study vegetation response to climate trends and diseases, and
acoustic and imaging sensors can identify, track, and measure
the population of birds and other species. The System for
the Vigilance of the Amazon (SIVAM) [3] provides envi-
ronmental monitoring, drug trafficking monitoring, and air
traffic control for the Amazon Basin. Sensor networks also
have been used for vehicle traffic monitoring and control for
a quite a while [4].
The proposed algorithm is based on Sequential Monte

Carlo methods (Particle filters). This technique has been
extensively used in tracking of moving objects. Although
tracking of point sources has been clearly demonstrated, the
tracking of spatially distributed object has not been widely
reported. Gilholm et al. [5] study the problem of tracking
of spatially distributed object using Sequential Monte Carlo
methods but assumes the knowledge of the distribution of
the source. But in airborne contaminant tracking, in general
we do not have any such model. To address this problem,
rather attempting to obtain a global model of the source, an
algorithm based on a set of local particle filters working to-
gether to obtain local contours of the airborne contaminant,
is proposed.

2. CONTOUR TRACKING ALGORITHM

In this paper, we are concerned with the problem of perform-
ing on-line state estimation for multi-dimensional signals that
can be modelled using Markovian state-space models that are
nonlinear and non-Gaussian. The unobserved global state
{xt; t ∈ N} is modelled as a Markov process with initial
distribution p(x0) and transition probability p(xt|xt−1). The
observations {yt; t ∈ N} are assumed to be conditionally in-
dependent (in time) given the process xt and of marginal dis-
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tribution p(yt|xt). We denote by Xt = {x0, . . . xt} and by
Y t = {y

0
, . . . yt}, respectively, the system state and the ob-

servations up to time t. The measurements yt are recorded by
K sensors, and we use yk

t
to denote the subset of observations

made by the k-th sensor. The tracking proposed in this paper
is based on Sequential Monte Carlo techniques (also known
as particle filters) [6]. The estimated contour points are ob-
tained from the posterior distributions calculated at each sen-
sor nodes.
The tracking is performed by estimating points on the

contour boundary using several local particle filters. The se-
quence of these points generates the contaminant boundary
of particular level of concentration. Following subsections
explain the initialisation, prediction and update stages of the
proposed algorithm and related issues.

2.1. Initialisation

The algorithm starts either with a set of known boundary
points or estimated points using the technique described be-
low. This technique works accurately if the boundary falls
within the region of exploration. For simplicity, we attempt to
estimate a fixed number of number of points (n). Each point
is obtained by moving the airborne sensor normal to the con-
tour boundary. In cases, where the initial contour boundary is
not known accurately, the initialisation proceeds with the help
of points known to fall close to boundary. It is assumed that
the number of such points are m (m << n). First join these
m points and then divide the circumference of the curve to
obtain n equi-spaced points. Generate n number of normals
associated with each point. The length of the normal is taken
as d (depends on the contaminant scenario) and spatial angle
is determined by its neighbouring points. By equi-sampling
along each of these normals, we can obtain the prior state
vector (x0 = [x1

0
, · · · ,xk

0
, · · · ,xn

0
]) associated with each n

points. The state vector for the sensor, xk
0
is given by the N

sample positions along the kth normal.

2.2. Prediction

Once the boundary locations at a previous time instance is
known (x̂k

t−1
), we can calculate the probable regions of the

current contaminant boundary. This is achieved by predict-
ing the previous estimated boundary locations by velocity of
each boundary points. Although, in contour tracking it is im-
possible to track a same point over a time span, the ’velocity’
estimated using two consecutive times, can provide a initial
region for further exploration. Initially, for the purpose of cal-
culation of velocity, it is assumed that each boundary point is
at the centre of the curve. If the velocity at point k is denoted
as sk, then the predicted locations are given by:

xp
∗k

t
= x̂

k

t−1
+ csk (1)

where c is a constant which weighs the velocity vector. Asso-
ciated with each of the predicted locations, we generate nor-
mals at each point. As before, the angle of the normals are
determined by two neighbouring points. Equi-spaced points
along the normals provides the predicted state vector, x∗k.
Measurements taken at the predicted state vector (yk

t
) pro-

vides the observations for the update step discussed below.

2.3. Update

Assume that at this stage we have the predicted state vector
from the prediction step or initialisation. Starting from 1st
sensor (k = 1), take measurements at positions denoted by
the predicted state vector. Use these measurements in the
particle filter update step to obtain boundary locations with
higher likelihood. Effectively, these samples (particles) de-
note the posterior probability of the local contour boundary.
These particles are used in the next time step as samples repre-
senting the prior probability. Expected values of these proba-
bilities provides the contour locations. But in some cases, the
normals may not traverse the contour boundary and this issue
is discussed in section 2.4.1. In any case, we should determine
whether the posteriori samples corresponds to the situation
where the normals are intersecting the contour boundary. To
check this we use the following simple criterion. We define a
direction indicator, si

d
= sign(yi

t
− ythreshold) (ythreshold is

the contaminant level to be tracked and yi
t
is the measurement

at position denoted by the ith element of x∗k). This indicates
on which side of contour boundary location, the measuring
sensor is. A positive direction indicator denotes that the mea-
surement point is inside the contour boundary and vice versa.
Combining this with the particle filter weight, we can define
the following the modified weight for each point in the the
state vector,

wi

mod
= si

d
wi i = 1, · · · , N (2)

If this modified weight is completely within the contour, the
value wi

mod
equals to 1 and if it is completely outside the

boundary, it is equal to -1. If this weight is 0 < wi

mod
< 1

then the normals intersect the boundary and we should make
sure that each of normals satisfy this condition. If this con-
dition is not satisfied, we should extend the region of explo-
ration as explained in the following subsection.
Thus, contour locations, x̂k at time t is given by:

x̂
k

t
= E(p(xk

t
)|Yk

t
) (3)

The curve made up from x̂
k

t
k = 1, · · · , n determine the esti-

mated contour boundary.

2.4. Implementation Issues

To apply the above the algorithm successfully in different
scenarios, a number of application related issues need to ad-
dressed. For example, in some cases, the normals generated
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may not traverse the contour and hence need to extended to
the region where the contour boundary is. Another issue is
that in some cases, the normals or extended normals may in-
tersect each other. To obtain a clear unambiguous curve, we
should address these problems.

2.4.1. Extending the region of exploration

From the particle filter weight, w, we obtain the sample posi-
tion which gives the maximum likelihood and generate a new
set of normals around these sample positions. Either we can
have the normal length to be d or depending on the variance
of unnormalised particle weight, we can increase the length
of normals. A very low variance indicates that all samples are
quite similar and therefore it is difficult to find the direction
where the likelihood improves. By using a longer length (2d)
for normals in this situation, we can quickly reach the contour
boundary.

3. SIMULATION RESULTS

In this section, simulation results obtained with our proposed
algorithm are presented. The vapour contamination data is
simulated using the SCIPUFF software [7]. The algorithm
written in MATLAB uses these data as measurements for
tracking. As the tracking is based on a set of particle fil-
ters, the measurements at each sample locations are obtained
as required (no off-line processing is required). Proposed
algorithm processes these measurements after adding noise
with a variance equal to 0.002. A simple scenario of single
emission is considered with just one cloud during the period
of tracking. Aim of the tracking is to estimate the contours
points with a level of −12dB (ythreshold = −12dB).
Each particle filter uses N = 50 number of samples (they

correspond to N number of locations along the line of explo-
ration). Initially, sensors are located at positions,
(−85.21, 36.06),(−85.175, 36.01), (−85.2, 35.97), (−85.25,

35.96), (−85.3, 35.98), (−85.32, 36.04) and (−85.27, 36.07).
The number of points on the contour to be estimated is n = 35
(We can employ either n number of sensors or use fewer
sensors to estimate the n points sequentially). Emission is
assumed to occur at time zero and the tracking is carried out
at time steps of 30 minutes for a duration of 15 hours.
Figure 1 shows the initial state vectors along normals at

initial positions (Initial known location are marked with a cir-
cle). Figures in diagram 2 illustrates the successful tracking
of contaminant throughout the simulation period. A Monte
Carlo simulation with ten different random seeds showed that
the proposed algorithm is robust to different simulation con-
ditions and the algorithm was able to track the contaminant at
all iterations. Estimation error is quantified using two quanti-
ties: Root Mean Square Error (RMSE) and Kullback-Liebler
(KL) distance. The RMSE (RMSE in this paper is calculated
by considering n estimation errors at a particular time) quan-
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Fig. 1. Initial state vector positions

tifies how far our estimated contour positions varies from the
actual contour in terms of spatial distance. But this fails to
take into consideration the variation in contaminant intensity.
A small value of RMSE does not indicate that contaminant is
safe but it tells that that estimated contour is close in terms
of distance to the actual one. The approximation of the esti-
mated contaminant level to the actual contaminant level can
be calculated using the KL distance.
Figure 3 shows the RMSE and KL distance for the pro-

posed algorithm. As can be seen from figure 3a, although the
RMSE slightly increases with time, it is low throughout the
tracking duration. The increase of RMSE is caused by the
rapid dispersal of contaminant with time. The KL distance
shown for five different runs in figure 3b shows that the KL
distance is very close to zero. A KL value of zero means that
the both estimated and actual levels coincide. A jump in KL
distance at time step 25 is caused by one of n points being
slightly away the contour boundary (At this point, the differ-
ent contour levels are very closely spaced). As the operat-
ing SNR (Signal to Noise Ratio) varies very widely, this phe-
nomenon (i.e., few points losing track) is expected. This study
shows that our proposed algorithm successfully track the air-
borne contaminant for the simple case presented. Tracking for
complex environments where contaminant clouds can merge
or split is currently under study.

4. CONCLUSIONS

A novel algorithm for tracking airborne contaminant was pro-
posed and simulations with SCIPUFF was used to illustrate
the performance of the proposed algorithm. The proposed al-
gorithm based on Sequential Monte Carlo methods estimates
the local points of contour boundary and can be operated in
a noisy measuring environment. Performance metrics of KL
distance and RMSE were used to assess the performance of
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Fig. 2. Contour tracking results at time steps of 5, 10, 15
and 20

the algorithm and these performance measures showed that
the tracking was successful throughout the emission period.
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