
SPATIAL LOCALITY TRADE-OFFS OF WAVELET-BASED APPLICATIONS IN DYNAMIC
EXECUTION ENVIRONMENTS

Bert Geelen∗,†,♦, Aris Ferentinos∗,‡,Francky Catthoor∗,†, Gauthier Lafruit∗, Diederik Verkest∗,†,¶

∗ IMEC vzw, Kapeldreef 75, B-3001 Leuven, Belgium, Email: firstname.lastname@imec.be
† Department of Electrical Engineering, Katholieke Universiteit Leuven, Belgium

‡ Department of Electrical and Computer Engineering, University of Patras, Greece
¶ Department of Electrical Engineering, Vrije Universiteit Brussel, Belgium

ABSTRACT
Future dynamic applications will require new mapping strategies to
deliver power-efficient performance. Fully static design-time map-
pings will not address the unpredictably varying application charac-
teristics and resource requirements. Instead, the platforms will not
only need to be programmable in terms of instruction set processors,
but also at least partial reconfigurability will be required, while the
applications themselves will need to exploit this freedom at run-time
to adapt to the dynamism. In this context, it is important for applica-
tions to exploit the memory hierarchy under varying memory avail-
ability. This paper presents a mapping strategy for wavelet-based ap-
plications: depending on the run-time conditions, it switches to dif-
ferent memory optimized instantiations, optimally exploiting tem-
poral and spatial locality under these conditions. A comparison is
performed between the gains of fully in-placed lifting-based wavelet
transforms, and non in-placed versions with higher spatial locality.

Index Terms— Multimedia systems, Wavelet transforms, Mem-
ory Management

1. INTRODUCTION
Portable multimedia applications place stringent requirements on the
platforms they run on, which should be energy-efficient for extended
battery life, and still provide high performance. Many multime-
dia applications have both pressing computational as well as huge
data storage requirements. Previous studies show that high off-chip
memory latencies and energy consumptions are likely to be the lim-
iting factor for future embedded systems [1]. Memory hierarchies
have been introduced long ago to improve the data access bandwidth
to cope with the growing performance mismatch between process-
ing units and the memory subsystem [2]. Moreover, an SRAM-
based domain specific memory hierarchy can be used to reduce the
power consumption, as data memory power consumption depends
primarily on the access frequency and the size of the data mem-
ory [3]. Power savings can be obtained by accessing heavily used
data from smaller Level 1 memories instead of large background
memories. Due to stringent embedded cost and power limitations,
pure hardware-controlled caches are not a desirable option. How-
ever, existing software-controlled methods have their limitations, es-
pecially in dealing with non-affine and dynamic data dependencies.

TheWavelet Transform (WT) produces a multi-resolution repre-
sentation of a signal, forming an important but complex component
for a new class of scalable applications. In these applications it is
possible to successively refine the quality of the reconstructed sig-
nal using increasing subsets of the transformed signal. This allows

♦ Research funded by a Ph.D. grant of the Institute for the Promotion of
Innovation through Science and Technology in Flanders (IWT-Vlaanderen).

connecting heterogeneous systems to the same network with dynam-
ically varying execution conditions, where each user can download
a varying subset of the transformed signal and still achieve a recon-
structed signal of optimal quality, according to the system’s techni-
cal capabilities and the encountered conditions. On the system itself,
the application will also have to deal with dynamism at task level by
competing for resources with other dynamically generated tasks with
real-time constraints, meaning not only the amount of available sig-
nal content varies, but also these resources. This offers the freedom
to dynamically scale the mapping requirements to the available re-
sources so the battery life is adapted to these varying resources. Ob-
viously, this necessitates real-time mechanisms and mapping guide-
lines, derived by the compiler flow and added to the middleware.

It is well known that loop transformations change the order in
which data items are accessed [4]. Reordering the accesses via loop
transformations to bring multiple accesses, or reuse of the same data,
closer in time leads to improved temporal locality. [5] demonstrated
that trade-offs between the amount of temporal locality exploited at
different Level 1 memory sizes for different loop transformations or
localizations can be exploited under dynamically varying Level 1
availability by switching to the most suitable localization at run-
time. In addition to improving the temporal locality, one can reorder
accesses and modify placement of data in memory such that data
items that are placed close together are also accessed close in time.
For cache based systems, good spatial locality means each cache
line fetch contains useful data, while for scratchpad memories it re-
sults in fewer block transfers by the DMA [6]. The state of the art
in general contains very little papers considering the complex and
systematic trade-offs which arise for algorithms with complicated
non-affine and dynamically changing wavelet-like data-flow graphs,
encountered due to input dependencies, prediction modes, scalability
layers,. . . [7, 8]. This paper significantly extends our previous work
in [5] to incorporate spatial locality in these trade-offs for more accu-
rate guidelines. It shows the potential for power savings still holds.
The analysis is applied to fully in-placed lifting scheme implemen-
tations [9], which on one hand require less Level 1 space due to the
in-placing, but on the other hand also suffer reduced spatial locality.

This article is organized as follows: Section 2 presents related
work. Section 3 gives an overview of the wavelet transform and
its implementation methods, while Section 4 extends the analysis to
spatial locality. Section 5 applies the analysis on two WT schemes
with different spatial locality characteristics, and gives the resulting
trade-offs. Section 6 extends the mapping guidelines for WT-based
applications to include this analysis, and shows the similar energy
gains remain possible. Finally, conclusions are drawn in Section 7.

14611-4244-1484-9/08/$25.00 ©2008 IEEE ICASSP 2008

2. RELATEDWORK
[1] presents an extended Data Transfer and Storage Exploration
methodology (DTSE) developed at IMEC and consisting of multiple
steps. Of special interest for these experiments is the Data Reuse
Exploration step [10] applied in the Memory Hierarchy (MH) tool
to find Data Reuse in the code at compile-time and to explore how it
can be optimally exploited. [11] presents an automated scheme for
improving whole-program locality by applying both loop and data-
layout transformations. These optimization schemes are, however,
not compatible with the complex index and loop code of the WT.

[12–14] present various memory-optimized execution orders or
localizations of the WT, offering various methods to avoid off-chip
misses: [12] reduces the cache misses during vertical filtering by
computing tiles of merged horizontal and vertical filtering, [13] fur-
ther avoids misses during the higher WT levels by merging lines
of computation over all the WT levels, while [14] offers the same
advantages, but by merging in a block-based manner, which cor-
responds well to further processing blocks. None of these imple-
mentations consider dynamically varying memory access or storage
requirements, or their impact on the mapping.

In contrast, this paper focuses on energy gains related to the
miss-rates of these different localizations for wavelet-based appli-
cations. It demonstrates that the execution order leading to the low-
est memory-transfers depends on the encountered Level 1 memory
space, which varies at run-time in environments with dynamically
introduced tasks competing for shared resources. Mapping guide-
lines are given for the filter sizes employed in JPEG2000, to opti-
mally exploit spatial and temporal locality. This is also a significant
extension of our own previous work [5].

3. THE WAVELET TRANSFORM
We here present background required for understanding our main
contributions in Sec. 5 and 6. Wavelet-based coding is a pow-
erful enabling technology for scalable applications, such as the
JPEG2000 [15] compression standard. It is based on the princi-
ples of the Wavelet Transform (WT), which is a special case of a
subband transform producing a type of localized time-frequency
analysis [16]. Fig. 1 shows an example of the transformed Lena
image, as a hierarchy of subimages, grouped in levels. Multireso-
lution coding can be achieved by selective decoding of transform
coefficients related to a certain frequency range or subband image.

HH1HH1LH1 HH1LH1 LH1...

HL1

HH1

HL1

HH1

HL1

LL2
(DC) HL2

LH2 HH2

HL1

LH1 HH1

LL2 HL1

HH1LH1

HL2 HL1

HH1LH1 LH1

LH2 HL1

HH1LH1

HH2 HL1

HH1LH1 LH1

HL1 HL1

..
.

LL2

LH2

LL2LL2 HL2

Fig. 1. Lena Input Image, 2 Level Transformed Lena, Regular Out-
put Subband Organization and Extract of In-placed Layout.

In digital compression applications, theWT is traditionally com-
puted as an iterated filter bank [17]. Each level of the FWT consists
of a lowpass and a highpass filtering followed by a subsampling op-
eration. The output of the lowpass filtering, after subsampling, rep-
resents the input to the next level of the transform, while the high-
pass samples are directly sent to the output. The iterative filtering or
lifting typically leads to code with complex data dependencies and
non-linear loop and index expressions. This makes automated opti-
mization strategies difficult to apply to wavelet-based applications.

Though convolution based filtering architectures are possible for
performing the WT operations, lifting based implementations offer

certain advantages. The lifting scheme is a method for simplifying
the WT by decomposing the filters into a set of prediction and up-
date lifting stages [9], as shown in Fig. 2 for 2 lifting stages. By
exploiting the redundancy between the highpass and lowpass filters,
the number of computation steps are reduced to almost half those
of conventional filtering approaches. Moreover, lifting scheme al-
gorithms do not require temporary arrays in the calculation steps, as
the output of the lifting stage may be directly stored “in-place” of the
input. Traditional filter bank algorithms require additional memory
to store both the original and the transformed signal during the com-
putations. Since after each transform level, one iterates on the low-
pass samples, located on the “even” positions of the previous level
in a regular row-major layout, this leads to an “interleaved” repre-
sentation in the wavelet domain (cf. Fig. 1 and 2). This interleaving
causes a non-optimal memory access pattern because the WT oper-
ates on data that is not contiguous in memory. The combined effect
of the reduced memory requirements and the lower spatial locality is
evaluated in Section 5.

ASAP Execution OrderIdeal Execution OrderWT Data-dependency

Level 3

Level 2

Level 1

Level 0

Fig. 2. Block-based 1D-WT, with the skewed As-Soon-As-Possible
execution schedule compared to the ideal (but not feasible) schedule.

3.1. Level-by-level vs. Block-based
The execution order of the filtering instructions has a big influence
on the memory and energy requirements of the WT. Two important
cases are the traditional level-by-level and the block-based localized
execution orders. Both can be implemented fully in-placed. The it-
erative filtering creates strong dependencies between the operations
of the various levels of the transformation. The simplest order to re-
spect these dependencies is the traditional level-by-level implemen-
tation. Here, the WT is sequentially calculated level by level, starting
from the original input signal. However, this schedule requires large
amounts of memory to store results at intermediate levels. More pre-
cisely, the calculations of a particular level start only if all outputs
of the previous level have been computed and temporarily stored in
memory. Consequently, the required memory size to store the tem-
porary data is equal to the input length. These large amounts of data
are unlikely to fit in small, efficient Level 1 (L1) memories and will
need to be stored in large L2 memories or even off-chip SDRAM, if
on-chip space is restricted for area or power reasons.

The block-based order can avoid these costly background ac-
cesses [14]. It is a scheduling which consumes inputs and interme-
diate results as soon as possible after their creation, so that immedi-
ate storage in SDRAM can be avoided. Ideally, for each input block
calculation step, the execution schedule prioritizes the vertical order
through the wavelet levels. However, because of the wavelet fil-
tering data dependencies mentioned earlier, this is not feasible, and
thus a “skewed” schedule is followed. For the 1DWT, the difference
between the ideal and the best possible execution schedule is illus-
trated in Fig. 2. The space required for this ordering is more likely
to fit in more efficient L1 memory, leading to a potentially faster and
more energy efficient implementation of the WT in comparison to
the level-by-level approach, but then the available opportunities for
data reuse have to be exploited very effectively.

1462

4. SPATIAL LOCALITY EFFECTS
[5] compared the miss-rates of a level-by-level and block-based im-
plementation, focusing on temporal locality. The block-based im-
plementation showed a superior performance at larger sizes where
it can exploit the filtering reuse and the reuse between WT levels.
However, if the space required to exploit this reuse is not available,
its miss-rate grows larger than that of level-by-level, which can still
exploit the filtering reuse at limited L1 sizes. When dynamically
introduced, pre-emptable tasks are present, especially in a multi-
threading context, this L1 space can be traded off at run-time with
other applications, meaning the amount of space varies over time and
cannot be statically predicted. If this is handled using static worst-
case design strategies, designs will typically be severely overdimen-
sioned making inefficient use of system resources. If the design is
instead adapted to the encountered conditions, resources will be ex-
ploited more efficiently and energy gains can be obtained. One way
of doing this is by switching between execution orders which are
more suited for specific L1 memory size ranges. At design-time,
the system is profiled to determine the most likely set of operating
conditions or scenarios allowing the selection of a minimal set of
memory-optimized implementations [18]. At run-time the middle-
ware can then determine what the actual execution scenario is and,
using guidelines derived at design-time, switch to the most compat-
ible localization. This requires knowledge of the behavior of the
different localizations under different execution conditions and al-
gorithmic settings, as was derived in [5] for temporal locality.

To extend this analysis to spatial locality effects and evaluate dif-
ferent data-layouts such as that of a fully in-placed implementation,
we derive the total amount of bytes transferred from L2 memory
including the data fetched due to spatial locality mechanisms only:
data is fetched from the L2 memory using a granularity of multiple
words combined into a line. When a word is accessed, all words
situated on the same line are fetched. Therefore the layout of data
elements in L2 memory, relative to the partitioning into lines must
be considered. This is illustrated in Fig. 3, which gives a top down
view of the dependency bands of Fig. 2, for a 2D in-placed WT. The
higherWT levels are visible here due to their reduced spatial locality,
leading to more redundant data transferred for these levels.

WT level 1

WT level 2

WT level 3

WT level 4 Addressed Element
Entire Fetched Line

Fig. 3. Top down view of data addressed and fetched for band of
blocks of an in-placed 4 level, 9/7 filter WT.

Increasing the line size will lead to increasing amounts of redun-
dant data transferred and stored. This does not mean large line sizes
should be avoided, as the cost of transfers also decreases thanks
to the higher communication efficiency. Here we are primarily
interested in deriving accurate switching guidelines by comparing
the miss-rate performance of different WT implementations to each
other, and not so much in determining what the optimal line size
is for the WT. This would require evaluating the trade-off between
the increased miss-rates and gains obtained in controller complexity,

communication efficiency, . . . As indicated in Sec. 1, the locality can
be influenced both by data layout and loop transformations. Modi-
fying the data layout will have an impact on the following functional
blocks of the application, e.g. the bitplane coder in JPEG2000 con-
suming data in a stripe like manner [15]. In this paper we analyze
the WT in isolation to the rest of the functional components. For
a global optimization, we can also evaluate costs of switching data
layouts between blocks or the effect of different layouts on the
consecutive functional blocks.

5. IMPACT OF IN-PLACING ONMISS-RATES

0

0

1e+07

1e+07

5e+06

1.5e+07

2e+07

2e+07

3e+07

4e+07

5e+07

6e+07

1

1

10

10

100

100

1000

1000

10000

10000

100000

100000

1e+06

1e+06

1e+07

1e+07

M
is

s
ra

te
(b

y
te

s
)

M
is

s
ra

te
(b

y
te

s
)

In-placed word/line, 1

non in-placed, 1 word/line

In-placed 4 words/line,

non in-placed, 4 words/line

L1 (cache) size (bytes)

in-placed, 1 word/line

non in-placed 1 word/line,

in-placed words/line, 4

non in placed, 4 words/line-

4 level, 9/7 filter, block-based

4 level, 9/7 filter, level-by-level

Fig. 4. Read miss-rates for a 512 × 512 image of level-by-level and
block-based WT, at 1 and 4 words/line.

Larger line sizes are essential for modern memories to increase
the access bandwidth, and to reduce the access-related latency per
word and energy per word. At larger line sizes, spatial locality starts
contributing to the miss-rate trade-off for different execution orders.
Fig. 4 illustrates this for both execution orders at line sizes of 1 and
4 words per line. The graphs demonstrate that in-placed schemes
are preferable at small L1 sizes, whereas non in-placed schemes are
superior at larger L1 sizes. A larger line size increases the poten-
tial for spatial reuse, but at smaller cache sizes this is more diffi-
cult to exploit, leading to more redundant data transfers. What is
relevant for our purposes, is how this influences both schemes rel-
atively. In-placed schemes suffer a transfer increase even at large
L1 sizes, because the higher WT levels have a low spatial local-
ity which is difficult to exploit. However, these WT levels corre-
spond to a low number of accesses. The lower WT levels, with more
accesses, have an increasing spatial locality resulting in a gradual
miss-rate increase for decreasing L1 sizes. Non in-placed schemes
have a high spatial locality at all levels, which is fully exploited at
larger L1 sizes. However, at some cache size, even this locality can
no longer be fully exploited, resulting in a sudden steep increase
in miss-rates, because the non in-placed schemes then suffer extra
read- and write-loads which was not the case for in-placed. These
phenomena also occur for other WT instantiations, where the in-
creases depend on the instantiation. Therefore this behavior can be
summarized in instantiation-dependent mapping guidelines.

6. EXTENDED MAPPING GUIDELINES
To efficiently exploit varying system resources, mapping guidelines
should contain information on the sizes where a certain localization

1463

is better, and the gains that can be obtained by switching to another
localization. Fig. 5 illustrates this for varying numbers of words per
line, for the 9/7 and 5/3 filter sizes of JPEG2000 [15].

When evaluating temporal locality alone, level-by-level execu-
tion orders were preferable at small L1 sizes, where they are able to
exploit more reuse, whereas block-based execution orders manage
to exploit more reuse at larger sizes. When also considering spa-
tial locality, this behavior still holds for the execution orders, but at
small sizes the miss-rate can be further reduced by applying a fully
in-placed scheme. At a line size of 4 words/line, Fig. 5 shows a
cross-over point for 5/3 filters at 165 bytes, where level-by-level
incurs 51% less misses before that size, and block-based 81% less
after. Likewise for 9/7 filters we observe a cross-over at 240 bytes,
with a 60% lower miss-rate for level-by-level at smaller sizes and a
77% lower miss-rate for block-based at larger sizes.

0

5e+06

1e+07

1.5e+07

10 100 1000 10000 100000 1e+06 1e+07

M
is

s
ra

te
(b

y
te

s
)

L1 (cache) size (bytes)

level-by-level,
in-placed 1 word/line,

block-based,
non in-placed, 1 word/line

level-by-level,
in-placed, 4 words/line

block-based,
non in-placed, 4 words/line

165

232

51%

46%

53%

81%

0

5e+06

1e+07

1.5e+07

2e+07

10 100 1000 10000 100000 1e+06 1e+07

M
is

s
ra

te
(b

y
te

s
)

level-by-level,
in-placed, 1 word/line

block-based,
non in-placed, 1 word/line

level-by-level,
in-placed, 4 words/line

block-based,
non in-placed, 4 words/line

585

240

60%

65%

77%

45%

4 level, 9/7 filter

4 level, 5/3 filter

Fig. 5. Read miss-rates for 9/7 and 5/3 WT filter sizes.
Using this design-time generated information, the middleware

can make a run-time evaluation, trading off these gains with costs
such as the overhead of switching between execution orders. Clearly,
the line size has a large impact on the potential gains, and should
be taken into account when deriving the guidelines. In practice the
size range for which level-by-level is optimal is quite small for these
straightforward layouts, so the block-based execution order will be
chosen most of the time. At times when there is a large pressure on
L1 memory due to applications executing simultaneously or due to
dynamism present in the wavelet-based applications themselves and
caused by more complicated prediction modes or scalability layers,
the middleware can switch to the level-by-level order, thereby avoid-
ing up to 60% of the misses that would be incurred if no switch had
been performed. Assuming these peak memory requirements occur
in a realistic range of 10-20% of the time, and considering the total
miss-rates, this would result in a 28-40% global miss-rate reduction.

7. CONCLUSION
Future dynamic applications will lead to dynamically and unpre-
dictably varying platform resource requirements. In this context it
is important for applications to optimally exploit the memory hier-
archy under varying memory availability. This paper demonstrates

how to achieve this for wavelet-based applications by trading off
L1 memory space required for various execution orders with their
potential temporal and spatial locality gains, permitting up to 60%
lower energy costs in memory accesses. Including spatial locality
in the analysis results in more accurate mapping guidelines and al-
lows switching to localizations with better data layout. Using this
compile-time generated information, the middleware can make an
informed switching decision at run-time. The results can be formal-
ized to be applicable to more general wavelet-based applications.

References
[1] F. Catthoor, S. Wuytack, E. De Greef, et al., Custom Memory

Management Methodology, Kluwer, 1998.
[2] D.A. Patterson and J.L. Henessy, Computer Architecture: A

quantitative approach, Morgan Kaufmann Publ., 1996.
[3] B. Amrutur and M. Horowitz, “Speed and power scaling of

SRAM’s,” in IEEE Journal of Solid-State Circuits, February
2000, vol. 35.

[4] Utpal K. Banerjee, Loop Transformations for Restructuring
Compilers: The Foundations, Kluwer Academic Publishers,
Norwell, MA, USA, 1993.

[5] B. Geelen, V. Ferentinos, et al., “Exploiting varying resource
requirements in wavelet-based applications in dynamic execu-
tion enviroments,” Journal of VLSI Signal Processing (subm).

[6] Mahmut Kandemir, Ismail Kadayif, et al., “Compiler-directed
scratch-pad mem. opt. for embedded multiprocessors,” IEEE
Trans. on VLSI Sys., vol. 12, no. 3, pp. 281–287, 2004.

[7] V. Ferentinos, B. Geelen, et al., “Adaptive mapping to resource
availability for dynamic wavelet-based applications,” in Proc.
of ESTIMEDIA, 2007.

[8] H. Schwarz, D. Marpe, and T. Wiegand, “Overview of the
scalable video coding extension of the H.264 / AVC standard,”
IEEE Trans. on Circ. and Sys. for Video Tech., September 2007.

[9] W. Sweldens, “The lifting scheme: A new philosophy in
biorthogonal wavelet constructions,” in Wavelet Applications
in Signal and Image Processing III, 1995, pp. 68–79.

[10] T. Van Achteren, R. Lauwereins, and F. Catthoor, “Data reuse
exploration techniques for loop-dominated applications,” in
Proc. 5th ACM/IEEE DATE Conf., April 2002, pp. 428–435.

[11] Mahmut Kandemir, “A compiler technique for improving
whole-program locality,” in Proc. of ACM SIGPLAN-SIGACT
POPL, New York, NY, USA, 2001, pp. 179–192.

[12] Gregorio Bernabe et al., “Reducing 3D fast WT execution time
using blocking and the streaming SIMD extensions,” Jour. of
VLSI Sig. Proc., vol. 41, no. 2, pp. 209–223, September 2005.

[13] C. Chrysafis and A. Ortega, “Line-based, reduced memory,
wavelet image compression,” IEEE Trans. Image Proc., pp.
378–389, March 2000.

[14] G. Lafruit, L. Nachtergaele, and J. Bormans, “Opt. mem. org.
for scalable texture codecs in MPEG-4,” IEEE Trans. on Circ.
and Syst. for Video Tech., , no. 2, pp. 218–243, March 1999.

[15] D.S. Taubman and M.W. Marcellin, JPEG2000: Image Com-
pression Fundamentals, Standards and Practice, Kluwer Aca-
demic Publishers, 2002.

[16] M. Vetterli and J. Kovacic, Wavelets and Subband Cod.,
Prentice-Hall, 1995.

[17] S. G. Mallat, “A theory for multires. signal decomposition:
The wavelet representation,” IEEE Trans. on Pattern Analysis
and Machine Intell., vol. 11, no. 7, pp. 674–693, 1989.

[18] Martin Palkovic, Henk Corporaal, et al., “Global memory
opt. for emb. sys. allowed by code duplication,” in Proc. of
SCOPES, New York, 2005, pp. 72–79, ACM Press.

1464

