
NOVEL PARALLEL HOUGH TRANSFORM ON MULTI-CORE PROCESSORS

Yen-Kuang Chen, Wenlong Li, Jianguo Li, and Tao Wang
Corporate Technology Group, Intel Corporation

ABSTRACT

After analyzing the performance bottlenecks of the Hough
Transform on multi-core processors, this paper proposes a
new Hough Transform implementation. The performance of
microprocessors improves significantly because of the
introduction of multiple cores. To harness the computation
power of such multi-core processors, we must effectively
execute many threads at the same time. This paper first
studies a coarse-grain and a fine-grain parallelization of a
straightforward Hough Transform implementation on an 8-
core machine. Due to parallelization overheads and memory
requirements, these schemes do not fully utilize computation
power. After that, we propose a new Hough Transform
implementation for parallelization. Experimental data shows
that the new Hough Transform exposes a significant amount
of concurrency and pretty good data locality. On the 8-core
machine, the new implementation has 25% better
performance than the old ones.

Index Terms—Parallel algorithms, parallel processing,
digital signal processors

1. INTRODUCTION

Hough Transform [1] is a standard tool in image analysis
and computer vision for feature extraction. It recognizes
global patterns in an image space by identifying local
patterns (ideally a point) in a transformed parameter space,
i.e. Hough space. The basic idea of this technique is to find
curves that can be parameterized, like straight lines,
polynomials, circles, ellipse, and so on, in a suitable
parameter space. Therefore, detecting curves reduces to
detecting local maxima in the Hough space to which a large
number of pixels from image space are mapped. The main
advantages of Hough Transform are the robustness to
discontinuous pixels and noise in real world images.

However, Hough Transform is very time consuming. On
a machine with 2.8GHz Intel® Xeon® processor, the Hough
Transform takes 1.4 seconds to process a single DVD frame.
This is 42 times slower than real-time processing (30 frames
per second). Without proper parallelization, it would be very
difficult for Hough Transform to achieve real-time or
interactive performance in the future.

Because of its significant importance and computation
intensive nature, Hough Transform has been attracted many
studies for faster execution. Xu et al. proposed the
randomized Hough Transform [2]. Roth et al. presented the
genetic Hough Transform algorithm [3]. Jiang et al. used
simulated annealing and Tabu search to accelerate Hough
Transform [4]. These three approaches mainly focus on the
algorithm enhancement.

Another way to increase the performance is to run Hough
Transform effectively on multi-core processors. The
performance of microprocessors improves significantly
because of the introduction of multiple cores, e.g., the latest
Intel® Core™ 2 Quad processor. Moving forward, we
expect a trend of increasing the number of processing cores
in a single microprocessor [5]. So, we can increase the
performance of Hough Transform by effectively
parallelizing it. In [6] and [7], Jin et al. and Chuang et al.
parallelize Hough Transform on multi-processor systems.
They split the image into sub-images, and distribute them
across processors. These two approaches communicate the
Hough voting table through the shared memory. Similar to
our parallelization on the old Hough Transform, this kind of
parallel implementation has synchronization penalty and
poor memory performance, as we will describe later.

Our work differs from prior work: (1) We use a number
of schemes to parallelize the Hough Transform. Our
parallelization goal is to compare different thread-level
parallelisms and achieve the best performance moving into
the future. (2) We propose a new Hough Transform
algorithm, which is lock-free and cache-friendly. By
extracting the fine-grain data-level parallelism, we obtain
significant performance gain on an 8-core machine.

2. HOUGH TRANSFORM

For Hough Transform, the popular usage is line detection
(Hough linear transform). Figure 1 shows the classical
Hough linear transform from OpenCV [8] (for ease of
comparison, we term this version as old Hough Transform).
It scans the input binary image, and maps each point in the
original x-y image space to a sinusoidal curve in the ρ-θ
Hough space by the formula ρ = xcosθ + ysinθ. The ρ
represents the distance between the line and the origin, and θ
is the angle of the vector from the origin to the closet point
(see coordinates in Figure 2). By using this equation and

14571-4244-1484-9/08/$25.00 ©2008 IEEE ICASSP 2008

parameterization, each point and line in the image plane has
one unique sinusoidal curve and one unique couple (ρ,θ) in
the Hough plane, respectively. As each line goes through
many points in image space, the mapped sinusoidal curves
of these points will intersect at a point in Hough plane,
which gives the distance and angle for the line in image
space.

One challenge in Hough Transform is the data
dependence, which limits the concurrency exploration
among pixels. In Figure 2, the three points (A, B, and C) in
the solid line are mapped to three different curves in Hough
plane, and the intersected point by these curves in Hough
space corresponds to the line that bisects these three points
in image space. The philosophy behind Hough Transform
implies that, for the line points, their mapped sinusoidal
curves will definitely go through one same point in Hough
space. The voting at this point indicates there is read-write
dependence between iterations (one iteration represents one
pixel point). Therefore, if we extract fine-grain data-level
parallelism (i.e., split the outside loop), we must protect the
parallel accesses to Hough voting table (i.e.,
accum[theta][rho]) to ensure there is only one thread
modifying this table at any time.

Another challenge of Hough Transform is its poor data
locality and unfriendly memory access behavior. As shown
in Figure 1, the Hough Transform shows good spatial data
locality on the input binary image as it reads the data
structure in row order. However, it exhibits very poor data
locality on the Hough voting table because the points of
mapped curve in the Hough space are not continuous.
Therefore, it is very difficult for the hardware to accurately

predict the memory access pattern. The poor data locality
and non-regular access pattern results in high cache miss
rates. (See Section 4.2 for memory performance analysis.)

3. PARALLELIZATION

3.1. Coarse-Grain Parallelized Old Hough Transform
One straightforward parallelization of Hough Transform is
to process different frames in parallel, that is, same
arithmetic Hough linear transform is applied to each frame
independently to detect lines. The advantage of such coarse-
grain parallelization is to avoid the locking since there is no
dependence between frames. However, processing a large
number of frames simultaneously will require a huge amount
of data (called, working set). When the size of the working
set is larger than the size of the microprocessor cache, the
parallel performance is often limited.

3.2. Fine-Grain Parallelized Old Hough Transform
To reduce the working set, we can multi-thread the old
Hough Transform at a finer granularity. We process only a
frame at a time, but we split the outside loop. As the old
Hough Transform has potential loop-carried read-write
dependence across iterations, we use locks (an atomic
primitive) to enforce exclusive access to Hough voting table.
However, the atomic primitive will incur expensive
synchronization overhead. The parallel speedup will be
limited on large-scale multi-core processors.

3.3. Fine-Grain Parallelized New Hough Transform

For(j = 0; j < height; j++)
 for(i = 0; i < width; i++)
 {
 if(BinImage[j][i] != 0)
 for(theta = 0; theta < numangle; theta++)
 {
 rho = i * Cos[theta] + j * Sin[theta];
 atomically_increment(accum[theta][rho]);
 }
 }

Figure 1 The Hough Transform in OpenCV

Figure 2 Hough line detection (one point in image space is mapped to one curve in Hough space. The number of

points in the mapped curve is determined by the numangle in Figure 1)

1458

We propose a new Hough Transform algorithm, as shown in
Figure 3. In the new Hough Transform, we first push the
edge pixels (non-zero elements) into a buffer, and then
perform voting on the Hough voting table. With respect to
the old Hough Transform in Figure 1, the new algorithm
accesses the Hough voting table in the order of ρ inside and
θ outside. With respect to the old Hough Transform in
Figure 1, this new algorithm has the following advantages:

First, this new Hough Transform algorithm has good
temporal and spatial data localities. Inside loop m, all edge
pixels are mapped into the same θ of the Hough voting table.
When two edge pixels have the same j value and similar i
values, they will be mapped into the same ρ or similar ρ’s.
In this case, accum[theta][rho] has good temporal/spatial
localities. (See Section 4.2 for memory performance
analysis.)

Second, besides having good data localities, this new
Hough Transform is also lock-free since each outside
iteration (θ) touches one row of the Hough voting table, and
different outside iterations access different rows. Thus, the
Hough voting table is not read-write shared among threads
when extracting the fine-grain data-level parallelism (i.e.,
split the outside loop).

In summary, this new algorithm is cache-friendly and
lock-free. Compared to the old Hough Transform, although
the new algorithm executes 14% more instructions, the
cache-friendly behavior makes it 25% faster than the old
Hough Transform on a single processor.

4. SCALING PERFORMANCE ON 8 CORES

Figure 4 shows the parallel performance of 3 parallelized
Hough Transform on an 8-core machine. The multi-core
platform is a dual-socket quad-core machine, with two
Intel® Core™ 2 Quad processors running at 2.33GHz.
Although performing well, the old Hough Transform doesn’t

scale linearly on the 8-core system. On the other hand, our
new Hough Transform algorithm scales perfectly. On the 8-
core system, our new Hough Transform is 25% faster than
the other two schemes for the single-threaded case.

To fully understand the speedup-liming factors on the 8-
core system, we characterize the parallel performance (1)
from the perspective of the high-level parallelization
overhead, e.g., synchronization penalties, load imbalance,
and sequential regions, and (2) from the detailed memory
behavior, e.g., bus bandwidth.

4.1. Parallel Performance Metrics
In general, our parallelized Hough Transform exposes good
parallel performance metrics. Figure 5 depicts the parallel
profiling metrics for these three different parallel
implementations. The higher the parallel region, the better
speedup can be achieved on highly threaded architectures.

Surprisingly, the profiling information suggests we
should have very good scalabilities. If we assume the
parallel region can scale perfectly, two parallel old Hough
Transform implementations should achieve the theoretical
speedups of 7.95 and 7.2, respectively. These numbers are
higher than the results shown in Figure 4. Thus, we believe
the scalability of old Hough Transform is limited by some
other factors that are discussed in Section 4.2.

4.2 Memory Subsystem Behaviors
Besides the general parallel performance metrics, the
memory subsystem also plays an important role in the
scalability—a workload cannot scale well when the
instantaneous bandwidth usage is higher than the system's
capability.

We perform interval sampling of the memory subsystem
behavior over time. Figure 6 shows the bandwidth usage
over time for the old Hough Transform and single-threaded
new Hough Transform on a single core. As we mentioned in

int EdgePixelSize = 0;

for(j = 0; j < height; j++)
 for(i = 0; i < width; i++)
 {
 if(BinImage[j][i] != 0)
 {
 EdgePixels[EdgePixelSize++] = j;
 EdgePixels[EdgePixelSize++] = i;
 }
 }

for(theta = 0; theta < numangle; theta++) //Theta // Hough voting procedure
{
 for(m = 0; m < EdgePixelSize; m+=2) // loop edge pixels
 {
 j = EdgePixels[m];
 i = EdgePixels[m+1];

 rho = i *Cos[theta] + j*Sin[theta];
 accum[theta][rho]++;
 }
}

Figure 3 New Hough Transform algorithm

1459

Section 2, the old Hough Transform is not cache-friendly.
Furthermore, there are some bursty memory access
behaviors—the instantaneous bandwidth usage is much
higher than the average bandwidth. When the bandwidth
demand is higher than the system's capability, the memory
performance becomes the bottleneck of scalability.

In contrast, as we mentioned in Section 3.3, the new
Hough Transform is cache-friendly, and has low bandwidth
demand. The instantaneous memory bandwidth consumption
is always lower that the system’s capacity. Therefore, the
scaling performance of new Hough Transform is not
affected by the memory subsystem on the 8-core machine.

5. CONCLUSION

This paper demonstrated how to parallelize an image
processing algorithm on multi-core processors. Realizing the
performance potential on multi-core processors requires the
applications to expose a significant amount of thread-level
parallelism. The scalability of the old Hough Transform is
limited by parallel overheads and memory requirements. Our
study suggests it is important to choose appropriate
sequential algorithm and parallelize it with fine-grain
parallelism to minimize memory requirements. Our new
Hough Transform (1) has better memory performance and
(2) does not use locks. Although the new Hough Transform
executes 14% more instructions than the old Hough

Transform, the good memory subsystem performance makes
the new algorithm 25% faster than the old algorithm even
when it is running on a single core. The new Hough
Transform algorithm will scale also well on future platform
with large number of cores, such as 64 cores [9]. Although
this paper only studies one program, the methodology in
analyzing and identifying the non-scaling performance is
applicable to other workloads targeting at multi-core
processors.

6. REFERENCES

[1] P Hough. Machine Analysis of Bubble Chamber Pictures. In
International Conference on High Energy Accelerators and
Instrumentation. CERN, 1959.

[2] L Xu, et al. Randomized Hough Transform (RHT): Basic
Mechanism, Algorithms, and Computational Complexities.
CVGIP: Image Understanding, 57(2):131–154, 1993.

[3] G Roth, et al., “Geometric Primitive Extraction Using a
Genetic Algorithm,” IEEE Trans. on PAMI, 9(16):901–905,
1994.

[4] T Jiang, et al., “Geometric Primitive Extraction Using Tabu
Search,” in Int’l Conf. on Pattern Recognition, vol. 2, pp.
266–279, 1996.

[5] S Vangal, et al., “An 80-Tile 1.28TFLOPS Network-on-Chip
in 65nm CMOS,” in Proc. of the 2007 IEEE Intl. Solid-State
Circuits Conf., 2007.

[6] L Jin, et al., “Parallel Solution of Hough Transform and
Convolution Problems—a Novel Multimodal Approach,”
ACM Symp. on Applied computing, 1992.

[7] H Chuang, et al., “An Efficient Hough Transform on SIMD
Hypercube,” in Int’l Conf. on Parallel and Distributed
Systems, 1994.

[8] Intel Corp. Intel® Integrated Performance Primitives.
http://www.intel.com/software/products/ipp

[9] W Li, et al., "Parallelization, Performance Analysis, and
Algorithm Consideration of Hough Transform on Chip
Multiprocessors," in Workshop on Design, Architecture and
Simulation of Chip Multi-Processors, Dec. 2007.

0

2

4

6

8

0 2 4 6 8

Number of threads

P
ar

al
le

l s
pe

ed
up fine-grain new Hough Transform

coarse-grain old Hough Transform

fine-grain old Hough Transform

0%

20%

40%

60%

80%

100%

1T 2T 4T 8T 1T 2T 4T 8T 1T 2T 4T 8T

coarse-grain
old Hough
Transform

fine-grain old
Hough

Transform

fine-grain new
Hough

Transform

Workloads

P
ar

al
le

l P
er

fo
rm

an
ce

 M
et

ric
 B

re
ak

do
w

n

Para Seq Imb Syn Para o/h

Figure 4 Scalability of parallel Hough Transform on 8-core machine Figure 5 Execution time breakdown

0

200

400

600

800

1000

1200

1400

900 904 908 912 916 920

Wall Clock Time (ms)

F
S

B
 B

an
dw

id
th

 (
M

B
/s

)

old Hough Transform new Hough Transform

Figure 6 Bandwidth usage over time

1460

