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ABSTRACT 
 
After analyzing the performance bottlenecks of the Hough 
Transform on multi-core processors, this paper proposes a 
new Hough Transform implementation. The performance of 
microprocessors improves significantly because of the 
introduction of multiple cores. To harness the computation 
power of such multi-core processors, we must effectively 
execute many threads at the same time. This paper first 
studies a coarse-grain and a fine-grain parallelization of a 
straightforward Hough Transform implementation on an 8-
core machine. Due to parallelization overheads and memory 
requirements, these schemes do not fully utilize computation 
power. After that, we propose a new Hough Transform 
implementation for parallelization. Experimental data shows 
that the new Hough Transform exposes a significant amount 
of concurrency and pretty good data locality. On the 8-core 
machine, the new implementation has 25% better 
performance than the old ones. 
 

Index Terms—Parallel algorithms, parallel processing, 
digital signal processors 
 

1. INTRODUCTION 
 
Hough Transform [1] is a standard tool in image analysis 
and computer vision for feature extraction. It recognizes 
global patterns in an image space by identifying local 
patterns (ideally a point) in a transformed parameter space, 
i.e. Hough space. The basic idea of this technique is to find 
curves that can be parameterized, like straight lines, 
polynomials, circles, ellipse, and so on, in a suitable 
parameter space. Therefore, detecting curves reduces to 
detecting local maxima in the Hough space to which a large 
number of pixels from image space are mapped. The main 
advantages of Hough Transform are the robustness to 
discontinuous pixels and noise in real world images. 

However, Hough Transform is very time consuming. On 
a machine with 2.8GHz Intel® Xeon® processor, the Hough 
Transform takes 1.4 seconds to process a single DVD frame. 
This is 42 times slower than real-time processing (30 frames 
per second). Without proper parallelization, it would be very 
difficult for Hough Transform to achieve real-time or 
interactive performance in the future.  

Because of its significant importance and computation 
intensive nature, Hough Transform has been attracted many 
studies for faster execution. Xu et al. proposed the 
randomized Hough Transform [2]. Roth et al. presented the 
genetic Hough Transform algorithm [3]. Jiang et al. used 
simulated annealing and Tabu search to accelerate Hough 
Transform [4]. These three approaches mainly focus on the 
algorithm enhancement.  

Another way to increase the performance is to run Hough 
Transform effectively on multi-core processors. The 
performance of microprocessors improves significantly 
because of the introduction of multiple cores, e.g., the latest 
Intel® Core™ 2 Quad processor. Moving forward, we 
expect a trend of increasing the number of processing cores 
in a single microprocessor [5]. So, we can increase the 
performance of Hough Transform by effectively 
parallelizing it. In [6] and [7], Jin et al. and Chuang et al. 
parallelize Hough Transform on multi-processor systems. 
They split the image into sub-images, and distribute them 
across processors. These two approaches communicate the 
Hough voting table through the shared memory. Similar to 
our parallelization on the old Hough Transform, this kind of 
parallel implementation has synchronization penalty and 
poor memory performance, as we will describe later.   

Our work differs from prior work: (1) We use a number 
of schemes to parallelize the Hough Transform. Our 
parallelization goal is to compare different thread-level 
parallelisms and achieve the best performance moving into 
the future. (2) We propose a new Hough Transform 
algorithm, which is lock-free and cache-friendly. By 
extracting the fine-grain data-level parallelism, we obtain 
significant performance gain on an 8-core machine. 
 

2. HOUGH TRANSFORM 
 
For Hough Transform, the popular usage is line detection 
(Hough linear transform). Figure 1 shows the classical 
Hough linear transform from OpenCV [8] (for ease of 
comparison, we term this version as old Hough Transform). 
It scans the input binary image, and maps each point in the 
original x-y image space to a sinusoidal curve in the ρ-θ 
Hough space by the formula ρ = xcosθ + ysinθ. The ρ 
represents the distance between the line and the origin, and θ 
is the angle of the vector from the origin to the closet point 
(see coordinates in Figure 2). By using this equation and 
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parameterization, each point and line in the image plane has 
one unique sinusoidal curve and one unique couple (ρ,θ) in 
the Hough plane, respectively. As each line goes through 
many points in image space, the mapped sinusoidal curves 
of these points will intersect at a point in Hough plane, 
which gives the distance and angle for the line in image 
space. 

One challenge in Hough Transform is the data 
dependence, which limits the concurrency exploration 
among pixels. In Figure 2, the three points (A, B, and C) in 
the solid line are mapped to three different curves in Hough 
plane, and the intersected point by these curves in Hough 
space corresponds to the line that bisects these three points 
in image space. The philosophy behind Hough Transform 
implies that, for the line points, their mapped sinusoidal 
curves will definitely go through one same point in Hough 
space. The voting at this point indicates there is read-write 
dependence between iterations (one iteration represents one 
pixel point). Therefore, if we extract fine-grain data-level 
parallelism (i.e., split the outside loop), we must protect the 
parallel accesses to Hough voting table (i.e., 
accum[theta][rho]) to ensure there is only one thread 
modifying this table at any time. 

Another challenge of Hough Transform is its poor data 
locality and unfriendly memory access behavior. As shown 
in Figure 1, the Hough Transform shows good spatial data 
locality on the input binary image as it reads the data 
structure in row order. However, it exhibits very poor data 
locality on the Hough voting table because the points of 
mapped curve in the Hough space are not continuous. 
Therefore, it is very difficult for the hardware to accurately 

predict the memory access pattern. The poor data locality 
and non-regular access pattern results in high cache miss 
rates. (See Section 4.2 for memory performance analysis.) 

 
3. PARALLELIZATION 

 
3.1. Coarse-Grain Parallelized Old Hough Transform 
One straightforward parallelization of Hough Transform is 
to process different frames in parallel, that is, same 
arithmetic Hough linear transform is applied to each frame 
independently to detect lines. The advantage of such coarse-
grain parallelization is to avoid the locking since there is no 
dependence between frames. However, processing a large 
number of frames simultaneously will require a huge amount 
of data (called, working set). When the size of the working 
set is larger than the size of the microprocessor cache, the 
parallel performance is often limited. 

 
3.2. Fine-Grain Parallelized Old Hough Transform 
To reduce the working set, we can multi-thread the old 
Hough Transform at a finer granularity. We process only a 
frame at a time, but we split the outside loop. As the old 
Hough Transform has potential loop-carried read-write 
dependence across iterations, we use locks (an atomic 
primitive) to enforce exclusive access to Hough voting table. 
However, the atomic primitive will incur expensive 
synchronization overhead. The parallel speedup will be 
limited on large-scale multi-core processors. 
 
 
3.3. Fine-Grain Parallelized New Hough Transform 

For( j = 0; j < height; j++ ) 
   for( i = 0; i < width; i++ ) 
   { 
      if( BinImage[j][i] != 0 ) 
          for( theta = 0; theta < numangle; theta++ ) 
          { 
              rho = i * Cos[theta] + j * Sin[theta]; 
              atomically_increment(accum[theta][rho]); 
          } 
   }  

Figure 1 The Hough Transform in OpenCV  

  
Figure 2 Hough line detection (one point in image space is mapped to one curve in Hough space. The number of 

points in the mapped curve is determined by the numangle in Figure 1)  
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We propose a new Hough Transform algorithm, as shown in 
Figure 3.  In the new Hough Transform, we first push the 
edge pixels (non-zero elements) into a buffer, and then 
perform voting on the Hough voting table. With respect to 
the old Hough Transform in Figure 1, the new algorithm 
accesses the Hough voting table in the order of ρ inside and 
θ outside. With respect to the old Hough Transform in 
Figure 1, this new algorithm has the following advantages:  

First, this new Hough Transform algorithm has good 
temporal and spatial data localities. Inside loop m, all edge 
pixels are mapped into the same θ of the Hough voting table. 
When two edge pixels have the same j value and similar i 
values, they will be mapped into the same ρ or similar ρ’s. 
In this case, accum[theta][rho] has good temporal/spatial 
localities. (See Section 4.2 for memory performance 
analysis.) 

Second, besides having good data localities, this new 
Hough Transform is also lock-free since each outside 
iteration (θ) touches one row of the Hough voting table, and 
different outside iterations access different rows. Thus, the 
Hough voting table is not read-write shared among threads 
when extracting the fine-grain data-level parallelism (i.e., 
split the outside loop).  

In summary, this new algorithm is cache-friendly and 
lock-free. Compared to the old Hough Transform, although 
the new algorithm executes 14% more instructions, the 
cache-friendly behavior makes it 25% faster than the old 
Hough Transform on a single processor. 
 

4. SCALING PERFORMANCE ON 8 CORES  
 
Figure 4 shows the parallel performance of 3 parallelized 
Hough Transform on an 8-core machine. The multi-core 
platform is a dual-socket quad-core machine, with two 
Intel® Core™ 2 Quad processors running at 2.33GHz. 
Although performing well, the old Hough Transform doesn’t 

scale linearly on the 8-core system. On the other hand, our 
new Hough Transform algorithm scales perfectly. On the 8-
core system, our new Hough Transform is 25% faster than 
the other two schemes for the single-threaded case. 

To fully understand the speedup-liming factors on the 8-
core system, we characterize the parallel performance (1) 
from the perspective of the high-level parallelization 
overhead, e.g., synchronization penalties, load imbalance, 
and sequential regions, and (2) from the detailed memory 
behavior, e.g., bus bandwidth. 
 
4.1. Parallel Performance Metrics  
In general, our parallelized Hough Transform exposes good 
parallel performance metrics. Figure 5 depicts the parallel 
profiling metrics for these three different parallel 
implementations. The higher the parallel region, the better 
speedup can be achieved on highly threaded architectures.  

Surprisingly, the profiling information suggests we 
should have very good scalabilities. If we assume the 
parallel region can scale perfectly, two parallel old Hough 
Transform implementations should achieve the theoretical 
speedups of 7.95 and 7.2, respectively. These numbers are 
higher than the results shown in Figure 4. Thus, we believe 
the scalability of old Hough Transform is limited by some 
other factors that are discussed in Section 4.2. 
 
4.2 Memory Subsystem Behaviors  
Besides the general parallel performance metrics, the 
memory subsystem also plays an important role in the 
scalability—a workload cannot scale well when the 
instantaneous bandwidth usage is higher than the system's 
capability. 

We perform interval sampling of the memory subsystem 
behavior over time. Figure 6 shows the bandwidth usage 
over time for the old Hough Transform and single-threaded 
new Hough Transform on a single core. As we mentioned in 

int  EdgePixelSize = 0; 
 
for( j = 0; j < height; j++ ) 
   for( i = 0; i < width; i++ ) 
   { 
     if( BinImage[j][i] != 0 ) 
 { 
  EdgePixels[EdgePixelSize++] = j; 
  EdgePixels[EdgePixelSize++] = i; 
 } 
   } 

 
for(theta = 0; theta < numangle; theta++) //Theta // Hough voting procedure   
{ 
 for(m = 0; m < EdgePixelSize; m+=2) // loop edge pixels 
 { 
  j = EdgePixels[m]; 
  i = EdgePixels[m+1]; 
 
  rho =  i *Cos[theta] + j*Sin[theta]; 
  accum[theta][rho]++; 
 } 
}  

Figure 3 New Hough Transform algorithm  
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Section 2, the old Hough Transform is not cache-friendly. 
Furthermore, there are some bursty memory access 
behaviors—the instantaneous bandwidth usage is much 
higher than the average bandwidth. When the bandwidth 
demand is higher than the system's capability, the memory 
performance becomes the bottleneck of scalability.  

In contrast, as we mentioned in Section 3.3, the new 
Hough Transform is cache-friendly, and has low bandwidth 
demand. The instantaneous memory bandwidth consumption 
is always lower that the system’s capacity. Therefore, the 
scaling performance of new Hough Transform is not 
affected by the memory subsystem on the 8-core machine. 
 

5. CONCLUSION 
 
This paper demonstrated how to parallelize an image 
processing algorithm on multi-core processors. Realizing the 
performance potential on multi-core processors requires the 
applications to expose a significant amount of thread-level 
parallelism. The scalability of the old Hough Transform is 
limited by parallel overheads and memory requirements. Our 
study suggests it is important to choose appropriate 
sequential algorithm and parallelize it with fine-grain 
parallelism to minimize memory requirements. Our new 
Hough Transform (1) has better memory performance and 
(2) does not use locks. Although the new Hough Transform 
executes 14% more instructions than the old Hough 

Transform, the good memory subsystem performance makes 
the new algorithm 25% faster than the old algorithm even 
when it is running on a single core. The new Hough 
Transform algorithm will scale also well on future platform 
with large number of cores, such as 64 cores [9]. Although 
this paper only studies one program, the methodology in 
analyzing and identifying the non-scaling performance is 
applicable to other workloads targeting at multi-core 
processors.  
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Figure 4 Scalability of parallel Hough Transform on 8-core machine Figure 5 Execution time breakdown 
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Figure 6 Bandwidth usage over time 
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