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ABSTRACT

Multiple memory banks design is employed in many high perfor-
mance DSP processors. This architectural feature supports higher
memory bandwidth by allowing multiple data memory access to be
executed in parallel. Dedicated address generation units (AGUs)
are commonly presented in DSPs to perform address arithmetic in
parallel to the main datapath. Address assignment, optimization of
memory layout of program variables to reduce address arithmetic
instruction, has been studied extensively on single memory archi-
tecture. Make effective use of AGUs on multiple memory banks is
a great challenge to compiler design and has not been studied pre-
viously. In this paper, we exploit address assignment with variable
partitioning for scheduling on DSP architectures with multiple mem-
ory banks and AGUs. Our approach is built on novel graph models
which capture both parallelism and serialism demands. An efficient
scheduling algorithm, Address Assignment Sensitive Variable Parti-
tioning (AASVP), is proposed to best leverage both multiple memory
banks and AGUs. Experimental results show significant improve-
ment compare to existing methods.

Index Terms— Scheduling, Memory Management, Design Au-
tomation, Program Compilers

1. INTRODUCTION
High-performance DSP applications generally require strict real-time
processing. To increase performance, some DSP processors em-
ploy multiple memory bank architecture to provide parallel memory
access, such as Motorola 56000, Analog Device ADSP2100, and
Gepard Core DSPs. Compiler support is essential to harvest the ben-
efits provided by multiple memory bank architecture. A number of
papers [3, 8] have investigated the use of multiple memory banks to
achieve maximum instruction level parallelism. These approaches
differ in either the models or the heuristics. However, none of these
works consider the combined effect of an important hardware feature
in most DSPs, Address Generation Units (AGUs). AGUs can per-
form address computations in parallel to the central data path. As a
result, when we access data in register-indirect addressing mode, the
address stored in the address register (AR) can be auto-incremented
or auto-decremented without extra addressing instruction. Contrary
to traditional compilers, DSP compilers can carefully determine the
relative location of data in memory and achieve compacted object
code size and improved performance. A lot of research [4, 2, 7] has
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been done to optimize the address assignment of variables to min-
imize the total number of address arithmetic instructions on single
memory architecture. However, none of above work consider ad-
dress assign problem on multiple memory bank architecture. In this
paper, we exploit address assignment together with variable parti-
tioning for scheduling on architectures with multiple memory banks
and AGUs to maximize performance.

First, we propose graph models that capture both parallelism for
variable partitioning purpose and serialism for address assignment
purpose. Variable partitioning is done with consideration of address
assignment. After variable partitioning, we then construct an address
assignment for each memory bank, and perform scheduling based
on the address assignment and memory bank configuration. The ex-
perimental results show that compared to using variable partitioning
technique alone, our proposed method achieves 14.4% reduction in
average schedule length and 20.1% reduction in the number of ad-
dress instructions.

The remainder of this paper is organized as follows. Section 2
provides a motivating example. Section 3 introduces basic concepts
and the architecture model. Graph modeling approach used in this
paper is presented in Section 4. The algorithm is discussed in Sec-
tion 5. Experimental results and concluding remarks are provided in
Section 6 and 7, respectively.

2. MOTIVATING EXAMPLE
In this section, we provide a motivating example to show that differ-
ent partitioning of variables can lead to different results in schedule
length. The computation code of the example is shown in Figure
1(a). The data flow graph (DFG) for the code is shown in Figure 1(b).
In the DFG, the squares represent memory operations (load/store),
while the circles represent ALU operations. The edges represent
data dependencies between ALUs and memory operations. Figure
1(c) shows a variable partition based on VIG graph proposed in [8].
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a + e = b;
d + c = f;

(c)

a e d c

b f

(b)

(a)

Fig. 1. (a) Example code. (b) Its corresponding DFG. (c) Variable
partition.

In Figure 2, based on the partition of � a,b,c � and � d,e,f � , with
default variable layout in memory, we got a schedule length of 5. In
Figure 3, after we run address assignment algorithm [4] to reorder
the variable’s layout in memory, we saved two address arithmetic
operations. However, the schedule length is still 5. In Figure 4,
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Partition 2

[2] ADD  R1,R2,R3        ADAR AR1 + 2   ;c

[4] ADD R1,R2,R4         ADAR AR2 + 2   ;f

[1] LOAD *(AR1),R1 ;a    LOAD *(AR2)−,R2;e

[3] LOAD *(AR1)−,R1;c    LOAD *(AR2),R2 ;d

[5] STOR *(AR1)    ;b    STOR *(AR2)    ;f

Fig. 2. Schedule with partitions of � a,b,c � and � d,e,f � .
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AR2
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[2] ADD  R1,R2,R3        −

[4] ADD R1,R2,R4         −

[1] LOAD *(AR1)+,R1;a    LOAD *(AR2)+,R2;e

[3] LOAD *(AR1)+,R1;c    LOAD *(AR2)+,R2;d

[5] STOR *(AR1)    ;b    STOR *(AR2)    ;f

Fig. 3. Schedule with partition of � a,b,c � , � d,e,f � & address assign-
ment.

we partition the variables differently, and with address assignment
optimization, we are able to achieve a schedule length of 3. This
saving shows that partitioning of variables not only need to consider
parallelism, but also need to consider address assignment to maxi-
mally leverage register indirect addressing mode provided by AGUs
in most DSP processors.

3. BASIC CONCEPTS ANDMODELS

The processor model we use in this paper is given as follows. There
are multiple function units and multiple memory banks in a pro-
cessor. There is an accumulator in each function unit and an ad-
dress register associated with each memory bank. Each operation
involves the accumulator and, if any, another operand from the mem-
ory. Memory access in each memory bank can only occur indirectly
via the address register. Furthermore, if an instruction uses an ad-
dress register � � � for indirect addressing, then in the same instruc-
tion, � � � can be optionally post-incremented or post-decremented
by one without extra cost. If an address register does not point
to the desired location, it may be changed by adding or subtract-
ing a constant, using the instructions ADAR or SBAR. In this pa-
per, � � 
 is used to denote functional unit � , and � � � is used to
denote the address register for memory bank � . We use *(ARi),
*(ARi)+, and *(ARi)- to denote indirect addressing through ARi, in-
direct addressing with post-increment, and indirect addressing with
post-decrement, respectively. This processor model reflects address-
ing capabilities of most DSPs, and can be easily transformed into
other architectures.

Data Flow Graph is used to model loops and is defined as
follows. A Data Flow Graph (DFG)  � � � � � � � � � � is a node-

Partition 1

AR1

a fPartition 2be d c

[2] ADD  (AR1)+    ;e    ADD  (AR2)+    ;c

AR2

[1] LOAD *(AR1)+   ;a    LOAD *(AR2)+   ;d

[3] STOR *(AR1)    ;b    STOR *(AR2)    ;f

Fig. 4. Schedule with partition of � a,e,b � , � d,c,f � & address assign-
ment.

weighted and edge-weighted directed graph, where � is the set of
operation nodes, �  � # � is the edge set that defines the prece-
dence relations for all nodes in � , � � ' � represents the number of
delays for an edge ' . � � + � represents the execution time for each
computation node + . � . Nodes in � can be various operations,
such as addition, subtraction, multiplication, logic operation, etc.

A static schedule of a cyclic DFG is a repeated pattern of an
execution of the corresponding loop. In our work, a schedule implies
both control step assignment, and functional unit allocation. A static
schedule must obey the precedence relations of the directed acyclic
graph (DAG) portion of the respective DFG. The DAG is obtained
by removing all edges with delays in the DFG.

4. GRAPHMODELING APPROACH

A graph modeling approach is used in this paper. To explore par-
allelism for multiple memory bank usage, and to explore serialism
for address register usage, two graphs are used to model these two
distinct properties. The nodes in both graphs represent all the lo-
cal variables stored in memory. Partitioning is done by considering
information captured in both graphs. Nodes in each final partition
correspond to variables assigned to each memory bank.

4.1. Access Graph

The first graph used in this paper is the Access Graph. Access
graph was first proposed by Liao et al. in [4]. An access graph

 1 3 � � � � � � 5 � is an undirected weighted graph, where each
node + . � corresponds to a unique variable and an edge ' . � be-
tween node 9 and : exists with weight 5 � ' � if 9 and : are adjacent
to each other 5 � ' � times in the access sequence. Access sequence
is the extracted from a schedule. To build an access graph before
scheduling is conducted, we will first build a partial access sequence
based on the access sequence within each computation. Basically, a
special symbol, “ < ” is inserted between the access sequences of two
neighbor nodes to denote that there is no relation between the two
neighbor variables because scheduling is not done yet. For example,
“ e f d < f a h < b f b ” is a partial access sequence, in which “h” and
“b” have no relation. With a partial access sequence, we can build
the access graph.

a
1 2

2

a = b + c;
b = b * c − a;

(a) b c

(b) (c)

c = c * 3 − 5;

b c a | b c a b | c c 

Fig. 5. (a) Example code. (b) Partial Access Sequence. (b) Its corre-
sponding Access Graph.

An example is shown in Figure 5. In this example, Figure 5(a)
shows the computation nodes, Figure 5(b) shows the partial access
sequence, and Figure 5(c) shows the final access graph, where each
node in the access graph represents a variable, and each edge rep-
resents the number of times that two variables are accessed next to
each other. For example, there is an edge with weight of “2” be-
tween “a” and “c” in the access graph because the variable “a” and
variable “c” are accessed next to each other two times in the access
sequence. The higher the weight of an edge, the more preference we
want to give to the variables connected by the edge to be assigned
to the same partition. So that more address calculation instructions
could be saved by using the address generation unit(AGU).
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4.2. VIG Graph

The second graph used in this paper is the VIG graph. A Vari-
able Independence Graph (VIG) is an undirected weighted graph

� � � � � � � � 	 � � � where � is a set of nodes representing vari-
ables, 	 � � � � is a set of edges connecting between nodes in � ,
whose memory operations can be executed in parallel potentially.
Function � maps from 	 to a set of real values representing a prior-
ity of partitioning node � and � to different memory modules of an
edge � � � � � � 	 [8].

Before presenting how a VIG is constructed, we will introduce
two important concepts, Mobility Window and Access Set. Given a
DFG � � � � � � 	 � � � � � , a Mobility Window [5] of node � � � ,
denoted by

	 �
� � � in this paper, is a set of control steps in a static

schedule that node � can be placed. The first control step node �
can be scheduled is determined by As Soon As Possible schedul-
ing (ASAP), and the last control step that node � can be scheduled
is determined by As Late As Possible (ALAP) scheduling with the
longest path as a time constraint. Mobility window gives the earliest
and the latest position a node can be scheduled. The overlap of mo-
bility windows of two nodes indicate the possibility that the nodes
could be scheduled in parallel. An example is shown in Figure 6,
mobility window for node 10 is

	 �
� � � � � � � � � � � � � � because

node 10 could be scheduled to step 0, 1, 2, or 3. We define the Ac-
cess Set as the set of memory operation nodes that access a particu-
lar variable. For example, ACCESS(a) = � 8,9 � in Figure 6 because
node 8 and 9 access variable � . With Mobility Window and Access
Set introduced, we can now introduce the calculation of the priority
function for the weight of the edges in the VIG graph.

Given a VIG � � � � � � 	 � � � , for � � � �  � � such that
� � � � �  � � 	 , the priority function of edge � � � � �  � is � � � � � �  � �� �

� � � � � , � � � # � � 	   � � � � , � � � # � � 	   � �  � , and	 �
� � � # 	 �

� � � %� � , where

�
� � � � � �

'
	 �

� � � # 	 �
� � � '

'
	 �

� � � �
	 �

� � � '

The weight of each edge in a VIG is a SUM which is related
to the possible mobility window overlapping of two variables. The
higher the weight of an edge, the more parallelism exist between the
two connecting variables. An example of VIG construction is shown
in Figure 6.
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ACCESS(a)={8,9}
ACCESS(b) = {0,4,5}
ACCESS(c) = {1,6,10}

w(a,b) = p(8,0) = 1/3
w(a,c) = p(8,1)+ p(8,10) + p(9,10)

w(b,c) = P(0,1)+P(0,6)+P(0,10)+

3

4

5

2

1

0
MW(8) = {2}
MW(9) = {3}
MW(0) = {0,1,2}
MW(4) = {5}
MW(5) = {0}
MW(1) = {0,1,2}
MW(6) = {0}
MW(10)= {0,1,2,3}

b

a

Fig. 6. Example Data Flow Graph. Mobility Window, Access Sets,
and Weight Calculation. Final VIG.

5. ALGORITHM
With the Access Graph and the Variable Independence Graph pre-
sented in Section 4, we can now model the potential parallelism and
potential serialism between program variables. Information modeled
in both graphs will be used jointly in partitioning the variables. The
problem of variable partitioning of ' memory banks is equivalent to
the maximum ' -cut problem, which is NP-complete [1]. A number
of excellent heuristics exist for solving the maximum ' -cut problem
[1]. To use such heuristics, we need to merge two weights into a sin-
gle weight for each edge. In this paper, we define the merged weight
of an edge ) � * � , � as

� � * � , � � ) � � � � � � * � , � * , � � - � � * � , �

where ) � , are two coefficients representing the trade-offs be-
tween parallelism and serialism. � � � � � * � , � is the weight of edge

) � * � , � on the VIG graph and � - � � * � , � is the weight of edge ) � * � , �
on the Access graph. Different coefficient values of ) and , explore
different trade-offs between parallelism and serialism.

The address assignment sensitive variable partitioning and schedul-
ing algorithm ( # #  � / ) is intended to be used in the back end of
a DSP compiler to optimize the intermediate code. The # #  � /
algorithm is shown in Algorithm 5.1.

Algorithm 5.1 Address-Assignment-Sensitive-Variable-
Partitioning( # #  � / )
Require: Intermediate codes represented as DFG � �

� � � 	 � 0 / � � � , stepping quantum 1
Ensure: An optimized schedule  and the corresponding ) � , .

1. Construct Access Graph � - � ;
2. Construct Variable Independence Graph � � � � by calculating
mobility windows and access sets;
for ) = 1 to 0 step by - 1 do
for , = 0 to 1 step by 1 do

3. Calculate merged weights for each � � * � , � with ) � , ;
4. Find the Maximum Cut. Allocate variables to memory
banks according to the cut result;
5. Generate address assignment for each memory bank using
mSOA() [7];
6. Run list scheduling to schedule the input � using address
assignment information;
if  2 4 ) � � 7 ) 8 ) 9 : � 4 �  � = ? * 9 A 2 4 ) � � 7 ) 8 ) 9 : � 4 then

? * 9 A 2 4 ) � � 7 ) 8 ) 9 : � 4 �  2 4 ) � � 7 ) 8 ) 9 : � 4 � G � ;
 H I  ; ) H I , ; , H I , ;

end if
end for

end for
Output  H and ) H � , H ;

The basic idea of # #  � / algorithm is to first create an Ac-
cess Graph and a VIG graph based on the input intermediate code,
then the merged weight of each edge is calculated based on differ-
ent ) � , values and variables are partitioned using result from max-
cut heuristic [6]. Address assignment is generated for each memory
bank based on the variables assigned. Finally, a priority based list
scheduling is used to schedule the input program based on the vari-
able assignment. During the variable partition phrase, ) varies from
1 to 0 and , varies from 0 to 1 by an input quantum 1 . At the end,
a best schedule that has the minimum schedule length and minimum
number of address instruction operations is chosen.

In step 6 of Algorithm 5.1, list scheduling is used with consider-
ation of address assignment obtained. Weighted bipartite matching is
used in each step of list scheduling. We repeatedly create a weighted
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Bench. Partition Parti. with A.A. AASVP
Sch. Len. Addr. Instr. Sch. Len. Addr. Instr. Sch. Len. %Sch-P %Sch-PA Addr. Instr. %Addr-P %Addr-PA � �

IIR 25 16 24 13 21 16.0% 12.5% 11 31.3% 15.4% 0.5 0.5
IIR-UF2 47 33 44 29 38 19.1% 13.6% 25 24.2% 13.8% 1 0.3
IIR-UF3 69 48 69 48 64 7.2% 7.2% 47 2.1% 2.1% 1 0.4
4-Latt. 83 62 88 55 71 14.5% 19.3% 49 21.0% 10.9% 0.1 0.9
8-Latt. 132 104 131 98 110 16.7% 16.0% 80 23.1% 18.4% 0.4 0.6
Allpole 68 35 62 27 57 16.2% 8.1% 25 28.6% 7.4% 0.9 0.5
Voltera 91 65 86 56 84 7.7% 2.3% 55 15.4% 1.8% 1 0.8
Ellip 120 79 117 70 99 17.5% 15.4% 67 15.2% 4.3% 1 0.2
Average Reduction (%) 14.4% 11.8% – 20.1% 9.3%

Table 1. The comparison of schedule length and address operation for VIG partitioning only, partitioning with address assignment, and AASVP scheduling

bipartite graph � � � between the set of available functional units
and the set of ready nodes in � 	 � , and assign nodes based on the
min-cost maximum bipartite matching

�
. In each scheduling step,

the weighted bipartite graph, � � � � � � � � � � � � �
� �

, is con-
structed as follows: � � � � � � � � � � � � � 	 � where � � � � � � � 	!

� " � � # � $ $ $ � � ' ( is the set of currently available FUs and � 	 � is
the set of ready nodes ; for each FU � �  � � � � � � � and each node

�  � 	 � , an edge � � � � � � � is added into � � � and the edge weight
is

�
� � � � � � �

� � � � � � � 	 � � � � � � � � , 	 � � � � � � , � - , � � � � � � � , where
� � � 	 � � � � � is the list of variables last accessed by each FU, � � , 	 � � � �
is the first variable that will be accessed by node � . � , � - , � � � � � � is
the longest path from node � to a leaf node.

� � � � � � � � � 2 � is a
function defined as follows:( � � is a list of variables; � is a variable
in the address assignment; 2 is the priority)

� � � � � � � � � 2 � �

45 6 2  � y=x, x  AL2  � y is a neighbor of x, x  AL2 Otherwise

In this way, the ready nodes with higher priority are considered first.
Given the same priority, nodes with address operation savings have
more advantage. After all the nodes are scheduled, the schedule �
and � � � are recorded. The main body of � � � � � algorithm is
repeated for different values of � � � . A best schedule is selected
which has the minimum schedule length and the minimum number
of address instructions.

6. EXPERIMENTS
In this section, we conduct experiments with the � � � � � schedul-
ing algorithm on a set of DSPstone benchmarks programs including
4-stage lattice filter, 8-stage lattice filter, differential equation solver,
elliptic filter and voltera filter. The experiments are performed on
a simulator with the similar architecture as Motorola 56000 DSP.
We compare our results with those from VIG partitioning only and
partitioning with address assignment directly. The experiments are
performed on a PC with a P4 2.1 G processor and 512 MB memory
running Red Hat Linux 9.0. In the experiments, the running time of

� � � � � on each benchmark is less than one minute.
The experimental results for VIG partitioning, partitioning with

address assignment and � � � � � algorithm, are shown in Table 1.
Column “Addr. Instr.” presents the number of address instructions
and Column “Sch. Len” presents the schedule length obtained from
three different scheduling algorithms: scheduling with VIG parti-
tioning only (Field “Partition”), VIG partitioning with address as-
signment applied afterward (Field “Partition with A.A.”), and � � � � �
algorithm (Field “ � � � � � ”). Column “%Sch-P” and “%Sch-PA”
under “ � � � � � ” represent the percentage of reduction in schedule
length compared with partition scheduling and partition with address
assignment respectively. Column “%Addr-P” and “%Addr-PA” un-
der “ � � � � � ” represent the percentage of reduction in the number

of address instructions compared with partition scheduling and par-
tition with address assignment respectively.

Compared to direct application of VIG partitioning scheduling,
the reduction in schedule length is 14.4% and the reduction in ad-
dress instructions is 20.1%. Compared to the partitioning scheduling
with address assignment applied afterward, the reduction in schedule
length is 11.8% and the reduction in address instructions is 9.3%. We
can see that if address assignment technique is applied directly after
VIG partitioning and scheduling is applied, we do achieve some re-
duction in the number of address instructions. However, total sched-
ule length is barely reduced. In � � � � � , when we consider address
assignment together with partitioning and scheduling, we gain sub-
stantial reduction in schedule length.

7. CONCLUSION
In this paper, we proposed an algorithm, � � � � � , that incorporate
address assignment into variable partitioning and scheduling, so we
can maximize the usage of both address generation units and mul-
tiple memory banks. � � � � � algorithm can significantly reduce
schedule length and address instructions.
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