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ABSTRACT

In this work we propose a physical layer design, based on Pulse Po-
sition Modulated (PPM) signals, for a decentralized wireless sensor
network implementing an iterative consensus algorithm. The pro-
posed scheme does not require any MAC protocol to avoid or re-
solve collisions, and is also suitable for a half-duplex implementa-
tion. The considered network model assumes only local coupling
among the nodes, thus allowing for low transmit power even in large
scale networks. Furthermore, we show how to remove the effect
of propagation delays, multipath, and non perfect synchronization
among the nodes, without requiring any channel parameter estimate.
As an example of application, we consider a simple parameter es-
timation problem, which is instrumental to discuss the fundamental
trade-offs arising in the system parameters settings, when both ob-
servation noise and coupling noise are considered in the performance
analysis.

Index Terms— Decentralized sensor networks, consensus,
PPM

1. INTRODUCTION

A considerable amount of research efforts have been recently de-
voted to the design and analysis of consensus algorithms [2]. The
fields of application of such system range from cooperative dynamic
control of moving agents [1] to decentralized sensor networks [3, 4]
(see also the references therein). Despite the considerable number
of works in this area, not as much attention has been devoted to find
out appropriate radio interfaces to implement the proper interaction
among the nodes. One exception is represented by [6], where a con-
sensus protocol is proposed based on the principle of data driven
consensus and employing Type Based Multiple Access. The great
relevance of this aspect is clear if one considers the possibly very
large number of nodes of the network and the inherently iterative
nature of the consensus algorithms. These two aspects, in fact, pose
serious problems to the design of a communication strategy based on
conventional approaches involving the use of MAC and scheduling
protocols. In the case of a wireless network, in fact, issues like col-
lision avoidance, with possibly repeated transmission in each itera-
tion, or iteration number tracking for each received packet, would in-
volve a very complicated system design, and a considerable amount
of consumed energy.

The scope of this work is to propose a physical layer strategy
that allows the nodes to implement the consensus algorithm without
the need of avoiding or resolving the collision of packets orriving on
the same node at the same time. Our approach requires very sim-
ple operations at the receiver to extract from the received signal just
the amount of information that is useful to compute the update term
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that, in each iteration, a node adds to its state in order to imple-
ment the equations governing the convergence to a consensus value.
A distinctive feature of our approach is that it does not require the
receiver to discriminate the signals coming from different transmit-
ters, and it does not require any channel estimate. We will show
that the proposed method is robust to propagation delays, multipath,
and non perfect synchronization among the nodes, provided that the
signalling interval, i.e. the time occurring between two successive
iterations, is large enough.

We consider a conventional discrete-time consensus algorithm,
see e.g. [7], in which the states of the nodes converge to a common
value, and show how to directly implement it at the physical layer
through the use of PPM signals. In particular, given a set of N nodes,
the equation for the dynamical system in each node is given by [2]:

xi [n + 1] = xi [n] + K

(
N∑

j=1

aij (xj [n]− xi [n])

)
, (1)

where xi [n] is the state variable of the i-th node at the n-th iteration,
∀i ∈ {1, . . . , N}; aij ≥ 0 are the coupling coefficients between
node i and its neighbors, that we assume to be real and positive, and
K is a coupling gain constant. In this work, we assume that the cou-
pling coefficients are constant, or, in other words, that the network
topology is fixed. In Section 2 we describe our system model, i.e.
the considered discrete-time algorithm and its convergence proper-
ties. In Section 3 we describe the proposed physical layer design. As
an application example, in Section 4, we will consider, for simplicity,
the estimation of a common parameter of interest, and describe the
fundamental tradeoff in the system parameter settings, when the joint
effect of observation noise and coupling noise are considered in the
performance analysis. Clearly, the same implementation could be
used, in principle, to perform different tasks, as long as their mathe-
matical formulation can be cast in terms of consensus. In Section 5,
finally, we draw our conclusions, also pointing out several possible
extensions of the proposed design.

2. SYSTEM MODEL

We consider a network of N nodes that is able to reach a globally
optimal decision by means of a distributed consensus algorithm.
Each node implements the discrete-time dynamical system (1),
whose state variable evolution depends on the initial conditions and,
in each iteration, on a term that carries information about the state
variables of the node’s neighbors. Defining the state increment

δi [n + 1] � K
∑

j∈Ni

aij (xj [n]− xi [n]) , (2)

and incorporating the presence of coupling noise, the considered up-
date equations and initial conditions can be written as{

xi [n + 1] = xi [n] + δi [n + 1] + Kwi [n]
xi [0] = si i = 1, . . . , N

, (3)
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where wi [n] represents an additive Gaussian noise term with zero
mean and variance σ2

w, and si, i = 1, . . . , N, are the initializing
parameters. To emphasize the local nature of the interactions among
nodes, in (2) we have introduced, for each node i, the set of its neigh-
borsNi, i.e. the set of nodes for which aij �= 0. Clearly the meaning
of the sum in (2) is the same as that of the sum in (1).

We assume that the noise realizations referring to different nodes
and to different iterations are statistically independent.

The convergence of the system depends on the coupling gain
K and on the network topology, which is usually represented by a
graph with vertexes corresponding to the nodes. If the coefficient aij

is greater than zero, there is a link between the nodes i and j, in the
direction from j to i, with weight aij .

The graph associated to the network can be either undirected,
i.e. with aij = aji ∀ (i, j) ∈ {1, . . . , N}2 , or directed, in which
case the coefficients can be asymmetric. Since the focus of this paper
is on the physical layer design we assume, w.l.o.g., that the graph is
undirected, but the same design could be used as well with consensus
algorithms running on networks with asymmetric graphs.

We briefly resume now the convergence properties of the above
algorithm. For details the interested reader is encouraged to check,
e.g., [2,3,7]. Under the fixed topology assumption, it can be showed
that, if the graph is connected, in the absence os noise, the system
converges1 to the following asymptotic value of the states variables2

lim
n−→∞

xi [n] =
1

N

N∑
i=1

xi [0] � x∗, ∀i ∈ {1, . . . , N} . (4)

The convergence rate depends on the coupling strength, which is de-
termined by the products Kaij . In our set up, the coefficients aij

represent a physical parameter that depends on the nodes’ transmit
power and the path losses. For a given set of coefficients aij , which
guarantees the network connectivity, the multiplying constant K de-
termines the convergence speed.

It is important to remark that the local nature of the interaction
allows the use of short range transmissions, with respect to the net-
work size, provided that the nodes density, and the transmit power,
are sufficiently high to insure the network connectivity.

3. IMPULSE RADIO IMPLEMENTATION

We assume that time is divided into slots of Ts seconds, denoted sig-
nalling intervals. In each time slot, a single iteration of the above
algorithm is carried out. In practice, in the n-th iteration, each node
transmits a signal representing its state variable, and receive the sig-
nals transmitted from its neighbors. Building on its received signal,
each node computes the state increment (2) to add to its state vari-
able.

The implementation we propose is based on Pulse Position Mod-
ulated signals (PPM). Each node modulates a baseband pulse p (t)
of duration τp seconds, much shorter than Ts. We assume p (t) has
unit area, i.e.

∫ τp

0
p (t) = 1.

Each node transmits a pulse Aip (t), with Ai chosen in order
to enforce an average pulse power Pi = (1/τp)

∫ τp

0
A2

i p
2 (t) . The

average radiated power of a node during the evolution of the algo-
rithm is given by the average pulse power multiplied by the duty
cycle τp/Ts: Pi,av = Pi (τp/Ts) .

1Convergence is guaranteed provided that the coupling gain is chosen in a
suitable interval, namely K ∈ (0, 1/2λL max), where λL max is the largest
eigenvalue od the Laplacian matrix defined in Section 3.1.

2Asymptotic convergence is valid only assuming the absence of coupling
noise. In the presence of coupling noise, convergence has to be defined in a
statistical sense, see Section 3.

Let us assume that the state variables xi, i ∈ {1, . . . , N} , can
take values comprised in a range [−Δ/2, Δ/2]. In the n-th iteration,
each node maps its state variable xi [n] to the position ti [n] of the
baseband pulse p (t) in the interval [−Tm/2, Tm/2], that we call
mapping interval, using the linear mapping:

ti [n] = xi [n] (Tm/Δ) . (5)

As explained in Subsection 3.1, to recover the effect of propagation
delays, multipath, and nonperfect synchronization, the signalling in-
terval duration must be chosen greater than the mapping interval one,
i.e. Ts > Tm.Focusing on the n-th iteration, we place the origin of
the time axis at the instant corresponding to the center of the map-
ping interval. With this choice, the signalling interval corresponds
to [−Tm/2 , Ts − Tm/2], and the signal transmitted from the i-th
node during the n-th signalling interval is:

pi (t) � Aip(t− ti [n]). (6)

3.1. Signal processing at the receiver
We assume a multipath propagation channel in each link, so that the
signal transmitted from node j is received from node i in Lij replicas

with respective delays τ 1
ij , . . . τ

Lij

ij , and path losses h1
ij , . . . h

Lij

ij .
We chose the signalling interval Ts so that it contains a guard interval
equal to the maximum delay of the network, i.e.

Ts > Tm + τmax, (7)

where τmax is defined as

τmax � max τ l
ij , ∀ (i, j) ∈ {1, . . . , N}2 , ∀l ∈ {1, . . . , Lij} .

(8)
In each signalling interval, each sensor receives a signal of the form

ri (t) =
∑

j∈Ni

Lij∑
l=1

hl
ijAjp

(
t− tj [n]− τ l

ij

)
+ ṽi (t) , (9)

where ṽi (t) is the receiver noise at the output of the matched filter,
assumed to be Gaussian with zero mean and variance σ̃2.

In writing (9), we have implicitly assumed that the nodes are
synchronized at the starting instant of each iteration. Later, we will
see that nonperfect synchronization can be recovered by simply
adding a guard interval before the start of the mapping interval.

We now describe the procedure that the receiver implements to
extract from the received signal the rightmost term in the right hand
side of (1), which we call the state increment to update the current
state value. We show next that, thanks to the PPM mechanism, re-
covering the state increment simply amounts for a sensor to perform
a double integration.

To compute its state increment in the n-th iteration, the i-th re-
ceiver performs the following operations:

1) shift of the time axis origin from the center of the mapping
interval to the emission time of its own pulse in the same iteration.
In this way, the received signal can be rewritten as

ri (t) =
∑

j∈Ni

Lij∑
l=1

hl
ijAjp

(
t− tj [n]− τ l

ij + ti [n]
)

+ ṽi (t) ,

(10)
and the signalling interval corresponds now to
[−Tm/2− ti [n] , Ts − Tm/2− ti [n]].
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2) integration of the received signal, producing a signal zi (t) ,
with t ∈ [0, Ts], according to the following rule:

zi (t) �

∫ T̃s

T̃s−t

ri

(
t′
)
dt′, (11)

where T̃s � Ts−Tm/2− ti [n], is the final instant of the signalling
period in the new time axis. It can be showed that

zi (t) =
∑

j∈Ni

Lij∑
l=1

hl
ijAju

(
t−

(
T̃s − (tj [n]− ti [n])

)
+ τ l

ij

)

+ ṽi (t) , ∀t ∈ [0, Ts] , (12)

where we have defined the integrated pulse u (t) �
∫ t

0
p (t′) dt′, and

the integrated noise term vi (t) �
∫ T̃s

T̃s−t
ṽi (t′ + ti [n]) dt′. Notice

that, in the absence of noise, zi (Ts) =
∑

j∈Ni

∑Lij

l=1 hl
ijAj .

3) integration of the processed signal zi (t) a second time, from
0 to Ts, and subtraction3 of zi (Ts) (Tm/2 + ti [n]), obtaining:

yi [n] =

∫ Ts

0

zi

(
t′
)
dt′ − zi (Ts)

(
Tm

2
+ ti [n]

)
(13)

=
∑

j∈Ni

Lij∑
l=1

hl
ijAj

(
tj [n]− ti [n] + τ l

ij

)
+ vi [n] ,

where we have used the property that the pulses p (t) have unit area.
The noise term, here, is vi [n] �

∫ Ts

0
vi (t′) dt′.

4) multiplication of yi [n] for KΔ/Tm, obtaining

δ̃i [n + 1] =K
Δ

Tm

yi [n]

=K
∑

j∈Ni

aij (xj [n]− xi [n]) + (14)

K
Δ

Tm

∑
j∈Ni

Lij∑
l=1

al
ijτ

l
ij + Kwi [n] ,

where we have used (5), and introduced the coefficients al
ij � hl

ijAj

and aij �
Δ

Tm

Lij∑
l=1

al
ij , and the noise term wi [n] � vi [n] Δ/Tm.

Defining Ψi �
∑

j∈Ni

Lij∑
l=1

al
ijτ

l
ij as the “delays-gains product

sum” at node i, and using (2), we can rewrite (14) as

δ̃i [n + 1] = δi [n + 1] + Kwi [n] + ΨiKΔ/Tm. (15)

We can see that this term contains the correct expression of the state
increment (2), plus a noise term and bias term. Interestingly, Ψi

does not depend on the state variables, but only on the gains and the
delays, which are assumed constant during the evolution of the dy-
namical systems. This observation suggests a simple way for each
node to estimate, prior to the algorithm run, its own Ψi , to be able
to subtract it from (15), thus obtaining an unbiased estimate of the
correct increment. In fact, looking at (13) one can see that if all the
nodes transmit a pulse centered at the origin, and perform the dou-
ble integration, each of them obtains exactly an estimate Ψ̂i of its

3The effect of noise on the value of zi (Ts) is typically negligible with
respect to the effect of the noise resulting from the second integration given
by (13).

own bias term. The estimate can be made more accurate by simply
reiterating the transmission more times, and averaging over the ob-
servations. It can be showed that the effect of an inaccurate estimate
is to introduce a common drift in the evolution of the states variables.

Remark 1: The proposed scheme can be equally well imple-
mented with half-duplex transceivers. In the absence of delays, this
is obvious, since if a pulse is not seen by the receiver because its
arrival time coincides with the emission time of the same node, its
contribution would disappear from the integral term. But this is ex-
actly what is desired, as this means that the state variables of trans-
mitter and receiver were equal, and hence their difference would in
any case give a null contribution to the state increment. The situation
is different in the presence of propagation delays, but it can be shown
that the estimation and subtraction of Ψi compensates for the signals
shadowing due to the possible use of half-duplex transceivers.

Remark 2: In the presence of synchronization offsets among the
nodes, their effects can be recovered simply inserting two guard in-
tervals in each slot, of duration ϕmax � max(i,j)∈{1,...,N}2

(∣∣ϕij

∣∣),
with ϕij being the offset between nodes i and j. In this way, it
is insured that the pulse emitted by a node in the n-th iteration,
will be received by its neighbor nodes in the signalling interval re-
ferred to the same iteration. The resulting delays are given now by
τ̃ l

ij = τ l
ij + ϕij and could be negative, hence the guard interval at

the beginning of the slot. Nevertheless, their presence is compen-
sated by the same mechanism described above.

As far as the noise term is concerned, it can be showed that the
variance of the discrete-time noise term wi [n] at the output of the
double integrator, is related to the variance σ̃2 of the noise ṽi (t) at
the output of the receiver’s matched filter through

σ2
w = σ̃2 (Δ/Tm)2 T 3

s /3.

The presence of coupling noise implies that the convergence of the
system has to be intended in a statistical sense. To be precise, it
can be showed that the linear system converges only in the mean. It
can be proved, see [7], that, due to the presence of coupling noise,
the state of each node undergoes a random walk, i.e. the evolution
of xi[n] is affected by an additive zero mean Gaussian noise term
υi [n]. If L is the Laplacian matrix associated to the network graph4,
and λ1, . . . , λN are the eigenvalues of the matrix (I −KL), in non-
decreasing order, it can be shown that, ∀i = 1, . . . , N − 1, λi ∈
(−1, 1); λN = 1; and.the variance of υi [n] is given by

σ2
υi

[n] =
K2σ2

w

N

(
n +

∑N−1

i=1

1− λ2n
i

1− λ2
i

)
, (16)

i.e. it diverges to infinity as n increases.
Resorting to methods coming from the theory of statistical ap-

proximation [5], it can be showed that the divergence of the noise
can be eliminated by using a time varying gain that decreases with
time, e.g. K [n] = K0/n.

4. NUMERICAL RESULTS

We illustrate the system performance with the following simple
example. Assume that the network task is to estimate a common
scalar parameter ϑ building on the set of observations gathered
at the nodes si = ϑ + ei, ∀i ∈ {1, . . . , N} , where ei is the
observation error, that we assume Gaussian with zero mean and
variance σ2

e . The ideal globally optimal estimate, which is given
by ϑ̂opt � 1

N

∑N

i=1 si, can be computed through the distributed

4The Laplacian is defined as the matrix with entries
lij = −aij , if i �= j, lij =

∑
j∈Ni

aij if i = j.
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algorithm by setting xi [0] = si. The decentralized estimate after
n iterations, that we denote as ϑ̂d (n), is affected by a zero mean
error, with variance is given by the sum of the variance of the error
inherent in the ideal global estimate, which is σ2

e/N , plus a term
coming from the coupling noise, whose entity depends on K and on
the nodes transmit power through (16).

We have simulated a network of N = 20 nodes deployed on a
square area of 100 m2, with multipath channels composed of Lij =
4 paths between each couple of nodes, and with symmetric path

losses modeled as h1
ij =

√
1/
(
1 + 1/d2

ij

)
for the first path (dij

being the distance between nodes i and j), and decreasing for the
remaining paths. The maximum delay was τmax = 0.5Tm. The
nodes compute the decentralized estimate of the parameter ϑ that
we have assumed comprised in [−30, 30]. The local observation er-
ror variance was σ2

e = 100, and we have dimensioned the states
range [−� /2,�/2] choosing � = 50.
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xi[n]

Fig. 1. States evolution of a single run

In Fig. 1, we have plotted a single realization of the algorithm
run obtained through the proposed physical layer implementation.
We have imposed an equal transmit power Pi for all the nodes. In
this case the ratio between the transmit power5 and the receivers
noise variance was Pi/σ̃2 = 25 dB, the coupling gain was K =
0.15 . The plots show that the proposed design is able to effectively
implement the algorithm, as the states (solid colored lines) converge,
in the mean, towards the average of their initial values (white trian-
gles).
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Fig. 2. Estimate variance

In Fig. 2, we show the corresponding decentralized esti-
mation performance, in terms of the estimation error variance
E{(ϑ̂d (n) − ϑ)2} (solid lines), averaged over 1000 trials, for
different values of K, withPi. The fact that for large n, the variance
increases, is due to the random walk effect mentioned in Section 3.1.

5Notice that the values of the required SNR at the receivers is indeed
very low, if one considers the assumed path loss model and a ratio between
the transmit power and the receiver noise variance of 25 dB.

Since the effect of the coupling noise depends on these parame-
ters, for a given constraint on the estimate reliability, there is a trade-
off between the number of iterations necessary to let the algorithm
converge (which decreases as K increases), and the transmit power.
In fact, to improve the estimate reliability one has to either decrease
K or increase Pi. We can see that with Pi/σ2 = 25 dB, the ideal
lower bound (given in this case by σ2

e/N = 5, dotted line) can be
practically achieved with K = 0.1.

5. CONCLUSION

In this paper we have proposed a possible physical layer implemen-
tation, based on PPM signals, of a discrete-time distributed consen-
sus algorithm suitable for wireless sensor networks. We have shown
that the proposed method is robust to propagation delays, multipath,
and synchronization offsets among the nodes, provided that the max-
imum delay between a transmitted signal and its replicas at the re-
ceiver, added to the time interval to which the state variables are
mapped, does not exceed the signalling interval. The possibility to
overcome these impairments is given by the estimation of a param-
eter that quantifies, at each node, the sum of the products of the
delays by the coupling coefficients between each node and its neigh-
bors. The implementation of the estimators does not require, at the
nodes, operations different from those required by the algorithm in
an idealized scenario with no delays. The most relevant advantage
of this physical layer design is that it does not require the receiver to
distinguish between the signals coming from different nodes, or to
estimate the channel parameters, but still it is capable to implement
the consensus algorithm. This fact is important because it drastically
reduces the complexity of each node, through the simplification of
the MAC layer, and the related reduction of energy consumption,
which in a wireless sensor network is a critical issue. In a future
work we will show how to extend the proposed design to systems
with higher resilience to the effect of coupling noise, i.e. with an
output noise variance that does not diverge to infinity.
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