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ABSTRACT

Complex wireless communication systems such as MIMO
require high-performance real-time implementations of
operations such as matrix inversion. This paper presents two
novel algorithms for this application. A novel modified
conventional Givens rotations (MCGR) method has been
derived which offers high-performance implementation since
it avoids high-latency angle-based architectures, such as
CORDIC. Furthermore, a novel modified squared Givens
rotations (MSGR) method has been proposed which extends
the original SGR method for complex valued data, and also
corrects erroneous results in the original SGR method when
zeros occur on the diagonal of the matrix either initially or
during processing. In addition, both of the proposed methods
avoid complex dividers in the matrix inversion, thus
minimising the complexity of potential real-time
implementations.

Index Terms— Matrix inversion, Matrix factorisation,
Givens rotations

1. INTRODUCTION

The emerging field of multiple-input multiple-output
(MIMO) systems for wireless communications (e.g. WiFi,
WIiMAX and ad hoc networks) promises to enhance the
quantity of information that can be reliably transferred
through a bandwidth constrained wireless channel.
Widespread adoption of these techniques in practical
applications depends on the effectiveness and efficiency of
their real-time implementations, which has prompted
research into algorithms for real-time implementation of
critical fundamental operations, such as matrix inversion.

Methods for computing matrix inversion can be divided
into two categories: iterative and direct [1]. Iterative
methods require an initial estimate of the solution and
subsequent updates based on calculation of the previous
estimate error. Normally, these iterative methods involve
high-complexity sequential matrix computations and are not
particularly suitable for high-performance implementation.
Direct methods include Gaussian elimination, Cholesky
decomposition, LU decomposition and QR decomposition
(QRD). These typically compute the solution in a known,
finite number of operations and are, therefore, more suitable
for time-constrained applications.

QRD has attracted particular attention for matrix
inversion for MIMO applications for a number of reasons.
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Firstly, the numerical stability of QRD is well known [2]. In
addition, the development of real-time architectures for
QRD for recursive least squares (RLS) in adaptive
beamforming and RADAR [3] is a well researched area.

Real-time implementations of emerging MIMO systems
(e.g. T-BLAST [4]) demand high-performance and low-
complexity matrix inversion operations on both real and
complex valued data. Several methods have been proposed
for the computation of QRD. Givens rotations [5] have the
advantage over Householder transformations [6] that they
can be more easily parallelised and are therefore more
appropriate for hardware implementation. In turn, several
methods exist for the computation of Givens rotations, i.e.
conventional Givens rotations (CGR) [5], squared Givens
rotations (SGR) [7] and CORDIC [8]. The iterative nature of
CORDIC can preclude it from high-throughput systems [9]
whilst CGR requires resource-expensive square-root
operations, prompting the emergence of SGR-based
algorithms which remove the need for these operations.
However, issues exist with SGR [7] in that it is derived for
real valued data only, and it produces erroneous results
when zeros occur on the diagonal elements of the matrix
either initially or during processing. These requirements
prompted the modified Givens rotations methods proposed
in this paper. In Section 3, a modified conventional Givens
rotations (MCGR) method that avoids the use of high-
latency iterative CORDIC and also minimises computational
complexity by avoiding complex divides during back
substitution stage is outlined. In Section 4, this is extended
to modified squared Givens rotations (MSGR) for both real
and complex valued matrices, while in Section 5, the
technique for coping with zeros on the diagonal is outlined.
The proposed MSGR method is a comprehensive, reliable
and low-complexity solution suitable for matrix inversion
operations in high-performance applications such as MIMO
systems.

2. QRD-BASED MATRIX INVERSION

Computation of the inverse of a matrix A can be performed
by firstly decomposing the matrix into a form which can be
more easily inverted. For example, QRD of a matrix A
results in

A=QR 1)
where, Q is an orthogonal matrix (for a complex valued
matrix A, Q is a unitary matrix) and R is an upper triangular
matrix. The inversion of the matrix A is then given by
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AT =@QR)'=R7TQ'=R7'Q" 2.
After QRD, inversion is much simpler because the inversion
of the upper triangular matrix R can be derived using back
substitution, as in (3) where W=R"', and the inversion of Q
is simply its Hermitian transpose.

J-1
—(Zwikr,q)/rjj i<j

k=1
Wi= r
0 i>j

3)

i=j

3. MODIFIED CGR

In this section, we derive a MCGR method for matrices with
complex values which not only avoids angle calculations
(usually computed using high-latency CORDIC), but also
avoids complex divide operations in the subsequent back
substitution stage. In order to study the CGR method, we
first take the example of rotating a 2x2 matrix of real values,
[a; ay; by bs]. A CGR is performed in order to zero the lower
diagonal element, as in (4) with € given by (5).

cosf sinflla; a,| |x; X, .

—sin@ cos@ | b b, 1o Vs @

O=tan"' (b /a;) ()

This method of directly computing angles and subsequent

rotations employs a technique such as CORDIC, which

supports such operations (e.g. inverse tan). However, in

order to avoid high-latency CORDIC and to instead use

conventional arithmetic operations, it is necessary to rework
the rotation matrix in (4) as

cosf sind 1 a, b
{— sind cos 9} - W{— b, al} (©).
If we then consider a 2x2 matrix of complex values, e.g.
a, a, Ale’ﬂ“ Azeieﬂ

then using the method proposed by Coleman and Van Loan
[10], a complex CGR can be described using two rotation
angles (6, and 6, ) as in (8)-(10).

cosf,  sin@e” | 4 A | | X Xye'e ®)
-sin@e”  cosf, | B B, 0 Yzem‘2

6, =tan"'(B,/ 4)) ©)

0, =0, -0y (10).

The rotation matrix in (8) may be expanded as
cos 6, sin ﬁlei'gz
—sin Hlei92 cosé,
an.

CJe% 0 [ cosh sing | 0
| 0 % |-sin€ cosf | 0 e

Use of this method produces complex values on the diagonal
of the resultant upper triangular matrix, which significantly

increases the computational complexity of the back
substitution stage, as in (3). In particular, complex divides
are required on the diagonal elements, which considerably
increase the complexity of a potential hardware
implementation.

In order to address this issue, a three angle complex
rotation (TACR) method is proposed in [11] which
generates only real values on the diagonal. The TACR
rotation matrix, written as in (12), can be applied to a NxK
matrix to generate an upper triangular matrix with real
values on the diagonal, apart from the diagonal element on
the N™ row, which will be a complex value. To make this
real, the N row must be rotated by —¢ (equivalent to

multiplying this row by e ) where ¢ is the angle of the
diagonal element.

{ cosBhe

. —i0
—sinfe """

sing, | e 0
cosd, | 0 e

As noted earlier, for the case of real values, these
methods (Coleman and Van Loan and TACR) involve angle
calculations ~ which  imply  high-latency = CORDIC
implementations. However, it is possible to modify the
TACR method for the general case which can then be
implemented using either CORDIC or conventional
arithmetic. Here, we propose a modified conventional
Givens rotations (MCGR) method by multiplying the TACR
rotation matrix by a unitary matrix, i.e.

1 0 cosfe % sin@e
i(0,,+0, . —i
0 e (G140, —sin 918 i0,

-iy
—if
3 {cos@le ol

. i,
—sin e

. —i0,
sinfe”" }

cos@he "%

(12)

cosd,
—sin g,

cosbe

sin@le_if)”l}_ 1 {af b;‘} (13)
0 Ehar————————————

cos e’ |a1|2+|b1|2 -b q

where, z" is the complex conjugate of z. The MCGR rotation
matrix (13) can now be implemented using either high-
latency angle based methods (e.g. CORDIC) or conventional
arithmetic operators. In addition, as with TACR, the
diagonal element on the N row can be made real by rotating
the row according to the angle of this diagonal element.

4. MODIFIED SGR

The use of resource-expensive square-root operations in
CGR prompted the development of the SGR method [7] for
calculating the upper triangular matrix without the need for
these operations and with reduced multiplications compared
to CGR. However, [7] addresses real valued data only and
produces erroneous results when zeros occur on the
diagonal. In this section, a MSGR method for complex
valued matrices is presented before the proposition of a
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novel technique to handle the case of zeros on the diagonal
in Section 5.
Using SGR, the matrix A is decomposed as follows
A=Q,D,U (14)
where, Q4 in general is not an orthogonal matrix, and U is
an upper triangular matrix,

Q,=QD,; (15)
D; =diag(R) (16)
U=D;R 17)
D, = diag(U) = diag(DzR) = D% (18).
The inversion of the matrix A is then given by
AT =Q D /U) " =UT QD) (19).

As U is an upper triangular matrix, its inversion can be
found by back substitution, as in (3). Also, since

QD7) =@QDz) ' =DxQ"
=D;Q" =(QDy)" =Q
inversion of this component is simply a Hermitian transpose.
To illustrate the MSGR method, consider a 3x4 matrix of
complex values as in (21).
r N S A

(20)

a|=la a, a3 ay @21

MSGR generates an upper triangular matrix, eliminating a;,
by and b, in a three-stage approach.

Stage I: Rotate rows r and a to eliminate element a; (i.e.

make a@; =0). From Section 3, MCGR for rows r and a with

complex values (13) can be written as

¢=(ir+aja)"? 22)
r= q_l (rl*r + al*a) (23)
E:q_l(—a1r+rla) (24).
From (23), we can see that
A o=R=q T (irtaja)=q 25)
and therefore,
Rr=rr+aa (26).
If we first assume that
u=rnr 27)
u=nT (28)

then, combining (26)-(28), the updating of row r can be
written as
U=u+a;a (29).
In a similar way, if we assume
a=w'?y (30)

where, w,>0 is a scale factor, then (24) can be rewritten as

— 172 1 V1 1/2 1 V1
a=w, —|V——r|=w, " —|V——u 31).
n n n U
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Effectively, the rows r and a have been translated to U and
V-space respectively. If we further assume that
* *
_ 7 7 nn _
w, = wéll/2 L wéll/2 Ll =w, L =wu /1 (32)
h h nh

then the MSGR updating can be rearranged as
U=u+w,yv (33)
V=v—(v,/u;)u (34
W, =w,u, /1, (35).
Stage 2: Rotate ¥ and b to eliminate b;. Since, I is in
U-space (i.e. u = FI*F ), row b must now be translated to V-
space for rotation. This is achieved by setting

b=w,'?v, (36).
As before, we find that
— —\* —2
— 172 71 172 1 n _ =
Wy =wy | Wy P | = wy =1—2 =wyu, U (37).
n n n

(Note that after rows a and b have been processed, 7; will
be a real value). Therefore, the updating of row b can be

written as
Vi
iy
U (38).

Stage 3: Rotate a and b to eliminate b, . In order to
carry out the rotations, a must be translated from V-space
to U-space and b must be translated to V-space, as
described in the following

u, =a,a

*

_| 2 ! 2hf Wi WY (39)
= Wa — V2 _u2 Wa —|V——u =Ww,V)
n u n U

_ o ol2p ) S12—1/2
Vonew = Wnew b= Whew Wb Vb (40).
Therefore, if we let w,,, =w, , then v, . =V, . This

implies that the updated scale factor w, must be used to

translate b in order to use V, as the new V-space vector

for further processing. The MSGR sequence of operations is
illustrated in Fig. 1.

1: Eliminate element (2,1) |

2 Eliminate slement (3,1) |

3: Eliminate element 3,2) |
X X|4: Translate last row to U-space

X X X X

ﬁ
x
x| o
x| %

0

0 0 X X X
o o GEED

Fig. 1. MSGR sequence of operations

The final phase of translating the last row to U-space is
necessary in order to make the diagonal element in this row



a real value. The MSGR method for the general case is
described using (41)-(43)

T=u+wnv (1)

where,  is the £ column currently being processed.
5. HANDLING ZEROS ON THE DIAGONAL

The analysis in Section 4 assumes that 1;#0, however, zeros
can occur on the diagonal either in the input matrix or during
phases of rotations (Fig. 2). Rotating two rows which have
pairs of adjacent equal-valued elements on the diagonal will
result in zeros on the first element (as desired) but also on
the diagonal position (undesired) of the lower rotated row.
During the next phase of rotations, (i.e. rotations to zero
lower diagonal elements in the next column) the first
element of the U-space is zero and must be dealt with before
further rotations can be carried out.

1: Eliminate element (2,1)

2: Eliminate element (3,1)

3: Eliminate element (3,2)
X X X X
First
0 element of
U-row=0!
Rotating rows with pairs of o(x X X

equal-valued elements along
diagonal produces a resultant
zero on the diagonal

Fig. 2. Occurrence of zeros on diagonal

In [7], Dohler proposed a solution for dealing with 1,=0.
However, the condition of both u;=v,=0 has not previously
been considered. Dohler proposed that,

u=wv v
foru, =0,| _ k
v = arbitrary
v 20 | _
w=0

This solution prohibits further processing based on these
updated values. For example, translation of a row from V-
space to U-space (such as that described in (39)) would not
be possible using Dohler’s suggested updated scale factor
w=0. To overcome this problem, a novel solution for the
condition =0, v#0 which permits subsequent processing,
as well as a solution for u;=v,=0, which has not been
previously considered, is proposed, i.e.

5

u= v u=wv
for uk:(), B va fOI" Uy 20, _
V=-u vV=-—u
v 20 | _ v =0|_
w=w w=w
Thus, the proposed MSGR method provides a

comprehensive and accurate solution for QRD-based
complex matrix inversion, such as that required in high-
performance MIMO systems.
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6. SUMMARY

In this paper, modified Givens rotations methods have been
proposed for QRD-based complex matrix inversion suitable
for high-performance applications such as MIMO systems.
Firstly, a novel modified conventional Givens rotations
(MCGR) method has been derived which offers high-
performance implementation since it avoids high-latency
angle-based architectures, such as CORDIC. Secondly, a
novel modified squared Givens rotations (MSGR) method
has been proposed which extends the original SGR method
for complex valued data, and also corrects erroneous results
in the original SGR method when zeros occur on the
diagonal of the matrix either initially or during processing.
In addition, both of the proposed methods avoid complex
dividers in the matrix inversion, thus minimising the
complexity of potential real-time implementations.
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