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ABSTRACT

Multiple input multiple output (MIMO) transmission is an emerging
technique targeted at 3G long term evolution (LTE) systems. One vi-
tal baseband function in MIMO receivers is QR decomposition of the
channel matrix. In this paper, a processor based complex-valued QR
decomposition is presented. The processor is enhanced with com-
plex arithmetic and inverse square root function units. The proposed
processor fits well with the real-time requirements of the MIMO re-
ceiver. The computing power is tailored for typical MIMO systems.
Due to the generality of the applied computing resources it can also
be used for other tasks. Also, the presented principles can be ap-
plied on any customizable processor architectures to accelerate QR
decomposition.

Index Terms— QR decomposition, MIMO, TTA, processor

1. INTRODUCTION

Extremely high data rates are expected in 3G long term evolution
(LTE) [1]. Multiple input multiple output (MIMO) transmission is
one technique enabling high data rates in 3G LTE. Advanced trans-
mission techniques require sophisticated algorithms in the receiver
and efficient implementation of such algorithms is crucial. The QR
decomposition is one of the many baseband functions of the MIMO
receiver. It transforms a complex-valued channel matrix H to a de-
composition of an orthogonal Q and an upper triangular R matrices.
The matrices are required by a list sphere detection (LSD) algorithm,
which detects the received, complex-valued symbols.

There are several ways to obtain QR decomposition. It can be
computed, e.g, using Householder transformations, Givens rotations,
or Gram-Schmidt process. However, quite often some variations of
the basic algorithms are used. The inherent regularity of matrix op-
erations can be utilized with systolic structures [2]. Elementary op-
erations can be alleviated with a CORDIC algorithm [3] which lends
itself to low-complexity hardware realization. Such an approach was
followed, e.g., in [4, 5, 6]. Another way to alleviate hardware com-
plexity is to carry out computations in logarithmic domain. This
practice is used in [7].

The MIMO receiver requires relatively small matrix size and low
processing speed for QR decomposition. Therefore, extensively par-
allel solutions like systolic array processors in [2, 6] or processor ar-
rays with reduced dimensions [4] are not justified to be used for such
systems. Furthermore, dedicated hardware [8] or structures without
bit accurate multipliers [7] have limited applicability for other tasks.
They have to idle for a long periods, whereas more flexible proces-
sors could be used for other tasks between successive QR decompo-
sitions, which results in an efficient utilization of available resources.

In this paper, an application-specific instruction-set processor
(ASIP) is customized for complex-valued QR decomposition. The
matrix is decomposed according to the modified Gram-Schmidt pro-
cess [9]. The computation of 1/

√
x function is alleviated with very

low complexity approximation, which is based on the binary repre-
sentation of fixed-point numbers. With 160 MHz clock frequency
the required QR decompositions of 3G LTE 4 × 4 MIMO receiver
can be computed within the coherence time of the channel and the
processor takes only 16.3 kgates.

Due to the programmability and bit-accurate multipliers the pro-
cessor is applicable also for other real or complex-valued baseband
tasks. It is shown that QR decomposition and the fast Fourier trans-
form (FFT), required by orthogonal frequency division multiplexing
(OFDM) demodulation, could share the same computing resources,
which would result in area efficient and economical MIMO OFDM
receivers. The proposed principles can be applied on any customiz-
able processor.

2. QR DECOMPOSITION FOR MIMO TRANSMISSION

In the MIMO systems, symbol detection algorithms like LSD require
triangularization of the channel matrix. Such a triangularization of
complex-valued matrix can be carried out with QR decomposition.

2.1. MIMO Transmission

In principle, there are multiple transmit and receive antennas in the
MIMO systems. The MIMO system transmitting a symbol s can be
described with

y = Hs + n (1)

where y is the received symbol, n is the noise vector and H is the
complex-valued channel matrix. The number of rows and columns
of H equals to the number of receive and transmit antennas, re-
spectively. Maximum-likelihood detection estimates the transmitted
symbol s′ by solving

s
′ = arg min

s
‖y −Hs‖2 , (2)

which gives the optimum result. However, solving (2) is intractable
with large constellations and multiple antennas and, therefore, sim-
pler algorithms must be applied.

Instead of solving (2), the QR decomposition of H is used to
alleviate computations. The maximum likelihood detection can be
substituted with

s
′ = arg min

s
‖y′ −Rs‖2 where y

′ = Q
H

y (3)
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for k = 1 : n

Rk,k = ‖H1:n,k‖

Q1:n,k = H1:n,k/Rk,k

for j = k + 1 : n

Rk,j = QH
1:n,k

H1:n,j

H1:n,j = H1:n,j− Q1:n,kRk,j

end
end

Fig. 1. Modified Gram-Schmidt algorithm transforms Hn×n to the
orthogonal Qn×n and upper triangular Rn×n. Conjugated trans-
pose is denoted with (·)H .

Approximating s′ is far easier with (3), since the R is in upper tri-
angular form. Now, the Euclidean distance in (3) can be computed
by gradually increasing the dimensions of the symbol vector. Partial
solutions too far away from the received symbol, can be discarded,
which efficiently limits the search space.

2.2. Modified Gram-Schmidt QR Decomposition

In this paper, the modified Gram-Schmidt algorithm [9] is used for
the QR decomposition. The modified Gram-Schmidt algorithm has
better numerical properties than the classical Gram-Schmidt algo-
rithm. In principle, the algorithm orthogonalizes a set of vectors.
The modified Gram-Schmidt algorithm is shown in Fig. 1 for square
matrix Hn×n. A straightforward implementation of the algorithm
would require square root function for distance computations and di-
vision operation, but they are demanding to implement on hardware.
The algorithm requires 2n3 arithmetic operations, which is also the
lower limit of the number of clock cycles with sequential execution.
Since the matrix size is determined by the number of antennas, it is
relatively small. In this paper, a 4×4 matrix is assumed, which con-
forms with [10] where at maximum four transmit or receive antennas
are suggested.

3. TRANSPORT TRIGGERED ARCHITECTURE
PROCESSOR

The proposed QR decomposition is implemented on a transport trig-
gered architecture (TTA) processor. However, the presented princi-
ples can also be applied on other customizable processors. The TTA
is an application-specific instruction-set processor template [11] where
parallel computing resources can be tailored according to the ap-
plication. Basically, the TTA processor consists of computing re-
sources which are connected via an interconnection network. The
TTA processors are modular, as they are tailored by including only
the necessary function units (FU). Since the processor can be tai-
lored, the interconnection network does not have to contain all the
connections, which reduces the bus load and power consumption and
allows a higher clock frequency.

The organization of the proposed TTA processor is shown in
Fig. 2. There are two dedicated units for complex-valued arithmetic
in the processor. The applied practice of using complex numbers
as the native data type accelerates computations significantly. If a
real-valued emulation of complex numbers were used, elementary
arithmetic operations would take several clock cycles and also load-
ing and storing numbers would require more memory accesses. In
practice, the complex numbers are presented as 32-bit words where
real and imaginary parts use upper and lower 16 bits, respectively.
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Fig. 2. Proposed TTA processor for QR decomposition. The pro-
cessor has FUs for optionally conjugated complex-valued multipli-
cation, complex-valued addition and subtraction, approximation of
1/
√

x, and for loading or storing data. Filled circles denote connec-
tions between FUs and buses.

The complex multiplier FU of the processor supports two op-
erations; it can compute the normal complex multiplication of two
fixed-point operands and complex multiplication with conjugated
multiplicand. The modified Gram-Schmidt algorithm in Fig. 1 re-
quires conjugated multiplication for computing the vector norm and
for conjugated dot product. The second complex-valued arithmetic
FU supports complex addition and subtraction operations.

The modified Gram-Schmidt algorithm requires division with
the (real-valued) norm ‖ · ‖. However, the multiplication is simpler
operation in hardware than division. For this reason, the division is
substituted with multiplication with an inverse value, i.e., inverse of
Euclidean norm. Thus, it is inverse of the square root. With this sub-
stitution two demanding operations, division and square root, are re-
placed with computation of the inverse square root function, 1/

√
x,

and multiplication. Naturally, also 1/
√

x is very demanding func-
tion but a low complexity circuitry for approximation of 1/

√
x is

used. The accelerated computation of 1/
√

x can be used also for
√

x

function with one multiplication, since x 1√
x

= xx− 1

2 = x
1

2 =
√

x.

4. LOW-COMPLEXITY APPROXIMATION OF INVERSE
SQUARE ROOT FUNCTION

The proposed approximation method relies heavily on the binary
representation of fixed-point numbers. In this paper, 11 fractional
bits, four integer bits, and the sign bit are used for presenting real
or imaginary parts of complex numbers. Instead of approximating
highly non-linear 1/

√
x, the method approximates more softly non-

linear 1/
√

1 + u after appropriate substitutions. This practice is jus-
tified by noting that x can be presented in fixed-point format as

x = 0.000 . . . 0︸ ︷︷ ︸
α

1u (4)

where α denotes the number of leading zeros. Since

x× 2α = 1.u and x = 2−α × 1.u , (5)

the desired form
1.u = 20 + u = 1 + u (6)

can be obtained. The same principle is used also if x ≥ 1. In this
case the direction of bitwise shifting is reversed. In other words, the
α may have negative sign. With the derived substitution

1√
x

=
1√

2−α(1 + u)
= 2

α

2
1√

1 + u
, (7)
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Fig. 3. Inverse square root approximation unit. Changing the sign of
the number is denoted with (−1). Left and right shifts are denoted
with << and >>, respectively, and comparison is denoted with >=.

which results to two cases depending on the remainder of α/2. For
even values α = 2k

1√
x

= 2k 1√
1 + u

(8)

and for odd values α = 2k + 1

1√
x

= 2k
√

2
1√

1 + u
. (9)

Hardware implementation of multiplication with 2k is simple shift-
ing. Since the non-linearity has been softened when compared to
1/
√

x, first order polynomials can be used to approximate terms
1/
√

1 + u and
√

2/
√

1 + u. Furthermore, for the simplicity of hard-
ware, the coefficients should be chosen in such a way that multipliers
are not needed. Instead of multipliers, adders and constant shifters
can be used if the softly non-linear curves are modeled with

1√
1 + u

� 0.965820− 1

4
u− 1

32
u (10)

and √
2

1√
1 + u

� 1.385742− 1

2
u +

1

16
u . (11)

The constant terms in decimal format have been searched exhaus-
tively and they can be presented with the applied 16-bit fixed-point
numbers.

The structure of the inverse square root approximation unit is
shown in Fig. 3. It consists of four shifters, constant shifters, adders,
subtracters, multiplexers, and a unit for changing the sign of the
number. The word lengths of computations are very short, since
u < 1 and some intermediate values are even scaled with right shift-
ing. The main benefit of the proposed approximation method is its
low-complexity. Usually, conventional 1/

√
x computation methods

rely on dedicated look-up tables and multipliers [12]. Such resources
increase the hardware costs significantly. If high accuracy is require,
it can be obtained with Newton’s iterations, which can be computed
with the multiplier FU of the processor.

5. RESULTS

The proposed QR decomposition processor is synthesized with Syn-
opsys Design Compiler on 0.13 μm standard cell technology for ob-
taining complexity and performance estimates.

Table 1. Area of the proposed processor and execution time of 2048
QR decompositions.

Clock frequency Area Execution time TQR

269 MHz 23.2 kgates 1.058 ms
212 MHz 17.7 kgates 1.343 ms
160 MHz 16.3 kgates 1.779 ms

5.1. Real-Time Requirements

The coherence time indicates how long the channel impulse response
is essentially invariant. It can be expressed as

tcoh = c/(vfc) (12)

where c is the speed of light, v speed of receiver, and fc is the carrier
frequency. With fc = 2.4 GHz, v = 250 km/h, and c = 3×108 m/s
the coherence time tcoh = 1.8 ms. The OFDM modulation will be
used in 3G LTE MIMO systems. The spectrum of the signal consists
of several subcarriers in OFDM signal and there are at maximum
2048 subcarriers in 3G LTE signal [1]. The channel matrix R must
be computed for all the subcarriers within tcoh = 1.8 ms.

5.2. Complexity and Performance

The proposed QR decomposition of complex-valued 4 × 4 matrix
takes 139 clock cycles. So, the decompositions for all the 2048 sub-
carriers takes

TQR = (2048× 139)/f (13)

where f is the clock frequency. The execution times for several clock
frequencies are tabulated in the Table 1. The execution time should
be compared to the available time frame of 1.8 ms. Naturally, some
computing time should be reserved for higher level control flow and
polling for a new input matrix H in real application.

The area of the proposed processor with different clock frequen-
cies is given in the Table 1. The area is expressed in terms of gate
equivalents. With lower clock frequency the synthesis process can
instantiate slower but simpler components, which results in savings
in the total gate count.

5.3. Resource Sharing with FFT

With high clock frequency, the idle time could be used for FFT,
in principle. The FFT is used to demodulate OFDM signal and it
also requires complex-valued arithmetic. Sharing the same resources
among the two functions would be more area efficient than having
dedicated processors. The proposed QR decomposition processor is
not able to compute FFT. Therefore, a hybrid of QR decomposition
processor and TTA FFT processor [13] should be used.

The combined processor should posses the features and resources
required by both the QR decomposition and FFT functions. The re-
source combination can be created with the aid of multiset unions,
i.e., the maximum multiplicity of resources of both processors deter-
mines how many resources of respective type are instantiated [14].
The TTA allows to include or exclude computing resources and to
modify the interconnection network freely. Thus, such a combined
processor could be generated with modest effort.

The FFT must be computed for each received OFDM symbol
for each antenna, so it is assumed that there will be four processors.
There are at maximum seven OFDM symbols in 0.5 ms subframe
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[1]. So, the symbol time TS = (0.5 ms)/7 = 71.4 μs. The TTA
processor presented in [13] is capable of performing 2048-point FFT
in 12332 clock cycles. The total number of required clock cycles in
1.8 ms time frame is

C =
1.8 ms

TS

× 12332 cycles + (2048× 139 cycles)/4 (14)

where the computation load of QR decompositions is distributed
among four processors, since there are four antennas and four FFT
based OFDM demodulators. The required clock frequency is

frequired = C/1.8 ms = 212 MHz. (15)

Again, some computing time should be saved for higher level control
flow of the main program.

5.4. Discussion

QR decomposition is typically implemented with a systolic array
and computations are alleviated with CORDIC algorithm. In [8] a
complex-valued matrix inversion based on QR decomposition is pre-
sented. The method uses squared Givens rotations. Instead of tra-
ditionally triangular array of processing elements (PE), the PEs are
mapped to a linear array structure. Inverting a complex-valued 4×4
matrix takes 175 cycles. As a drawback, such an array processor is
not flexibly programmable like ASIPs.

In [4] a floating-point real-valued programmable ASIP for QR
and singular-value decomposition is presented. The ASIP contains
CORDIC module and ASIPs can be structured as an array for high
throughput. The ASIPs are programmable, but the structure resem-
bles array processors as the PEs are substituted with the presented
ASIPs.

Computations in log
2

domain are applied in [7]. The parallel
architecture for 4 × 4 matrix inversion with the aid of QR decom-
position takes 72 kgates and achieves a latency of 0.24 μs. As a
drawback, such an architecture is too fast for the requirements of
3G LTE MIMO receiver. The architecture has to idle most of the
time and the computing resources cannot be used for other tasks,
since the architecture is not programmable. In addition, computing
in log

2
domain may not be suitable for other functions.

A structure with fully programmable Nios processor and CORDIC
accelerator in FPGA is presented in [5]. The CORDIC elements are
used for QR decomposition and the following back substitution for
solving a set of equations is computed on Nios processor. As a draw-
back, the accelerating CORDIC elements are not tightly connected
to the data path of the processor. Instead, the CORDIC accelerator
and Nios processor communicate via memory.

In this paper, the ASIP implementation of the QR decompo-
sition overcomes the aforementioned drawbacks. High computing
capacity is not targeted due to the small matrix size. Instead, rela-
tively low complexity, flexibility, and programmability are the main
objectives. The flexibility is a consequence of the programmability
and bit-accurate multiplication, addition, and subtraction FUs, which
can be used also for other computations. The simple approximation
method of the 1/

√
x contributes to the low-complexity. The pro-

grammability is not limited to minor changes of the algorithm, since
all the data transports on internal buses are defined individually in
the instruction word.

6. CONCLUSIONS

A processor based complex-valued QR decomposition was devel-
oped in this paper. The modified Gram-Schmidt algorithm was ap-

plied. The algorithm was justified with the versatility of the pro-
cessor with complex-valued multipliers. The results showed that the
throughput of the proposed implementation fits well with typical re-
quirements of the MIMO receiver. The computing resources could
be shared by mapping the QR decomposition and the FFT to the
same combined processor and these essential functions of the MIMO
OFDM receiver could be processed with practical clock frequency.
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