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ABSTRACT

A 16× 16 programmable analog radial-basis-function (RBF)
based classifier is demonstrated. The distribution of each fea-
ture is modeled by a Gaussian function, which is realized by a
proposed floating-gate bump circuit having bell-shaped trans-
fer characteristics. The maximum likelihood, mean, and vari-
ance of the distribution are stored in floating-gate transistors
and are independently programmable. By cascading these
floating-gate bump circuits, the overall transfer characteris-
tics approximate a multivariate Gaussian distribution with a
diagonal covariance matrix. An array of these circuits con-
stitutes a compact RBF-based classifier. When followed by
a winner-take-all circuit, the analog classifier can implement
vector quantization. Automatic gender identification is im-
plemented on a 16 × 16 analog vector quantizer chip as one
possible audio application of this work. The performance of
the analog classifier is comparable to that of digital counter-
parts. The proposed approach can be at least two orders of
magnitude more power efficient than the digital microproces-
sors at the same task.

Index Terms— Analog classifier, Gaussian distribution,
Radial basis function, Vector quantizer, Bump circuit

The aggressive scaling of silicon technologies has led to
transistors and many sensors becoming faster and smaller.
The trend toward integrating sensors, interface circuits, and
microprocessors into a single package or into a single chip
is more and more prevalent. Fig. 1(a) illustrates the block
diagram of a typical microsystem, which receives analog in-
puts via sensors and performs classification, decision-making,
or, in a more general term, information-refinement tasks in
the digital domain. Although fabrication and packaging tech-
nologies enable an unprecedented number of components to
be packed into a small volume, the accompanying power den-
sity can be higher than ever, which has become one of the
bottle-neck factors in the microsystem development. If the
information-refinement tasks can be performed in the ana-
log domain with less power consumption, the specifications
for the analog-to-digital-converters, which are usually power-
hungry, can be relaxed. In some cases, analog-to-digital con-
version can be avoided altogether. The system can hence
achieve higher power efficiency.

In this paper, we demonstrate a highly compact and
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Fig. 1. (a) The block diagram of a typical microsystem. (b) An
array of the proposed floating-gate bump cells, which is an RBF-
based classifier, followed by a winner-take-all circuit constitute a
higly compact and power-efficient analog vector quantizer.

power-efficient, programmable analog radial-basis-function
(RBF) based classifier. It can serve the functions indicated
inside the dashed box in Fig. 1(a) and is at least two orders of
magnitude more power efficient than the digital counterparts.
As illustrated in Fig. 1(b), the analog RBF-based classifier is
composed of an array of proposed floating-gate bump cells
having bell-shaped transfer characteristics that can realize
the Gaussian distribution functions. The height, the width,
and the center of a bump circuit transfer curve, which rep-
resent the maximum likelihood, the variance, and the mean
of a template distribution respectively, can be independently
programmed. The ability to program these three parameters
empowers the classifiers to fit into different scenarios with the
full use of statistical information up to the second moment.

When the RBF-based classifier is followed by a winner-
take-all (WTA) stage, it results in an analog vector quantizer,
which classifies the input data to the most representative tem-
plate. In this paper, we conduct the automatic gender identifi-
cation experiment on a resulting analog vector quantizer chip
as a demonstration of one possible application of our analog
RBF-based classifier. Other possible applications include en-
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Fig. 2. A: The symbol for a two-input floating-gate transistor. B:
The schematic of the bias generation block. C: The schematics of the
proposed floating-gate bump circuit. D: The transfer characteristic
of the inverse generation block.

vironment classification in hearing aids, image pattern recog-
nition, and chemical sensing, etc.

1. THE PROGRAMMABLE BUMP CIRCUIT

Floating-gate transistors in the circuits have two equal-size
input capacitors and the symbol is shown in Fig. 2A. The
schematics of the bias generation and the proposed floating-
gate bump circuit are shown in Fig. 2B and C. The new bump
circuit is composed of an inverse generation block, two vari-
able gain amplifiers (VGA), and a conventional bump circuit
[1]. The inverse generation block provides the complemen-
tary input voltages to the VGA, as shown in Fig. 2A. If the
floating-gate charges onM02 M13 andM14 are matched, then
the output current will be independent of the input common-
mode level. The height of the bell-shaped transfer curve is
set by the tail current, Ih, of the conventional bump circuit.
The width can be adjusted by varying the gain of the VGA. A
detailed description of the circuit has been given in [2].

The magnitude of the VGA gain decreases exponentially
with the common-mode charge on M21 and M22 and hence
the width of the bell-shaped transfer curve increases expo-
nentially. We can program the differential charge on M21 and
M22 to vary the center of the bell-shaped transfer curve, and
program the common-mode charge to tune the width. The
technique to precisely program the charges in a floating-gate
transistor array was described in [3]. Because the template
information is stored in a pair of floating-gate transistors as
in [4, 5], this circuit has the potential to implement adaptive
learning algorithms with not only an adaptive mean but also
an adaptive variance.

All of the following results are from a 16 × 16 (16 tem-
plates in a 16-dimensional feature space) analog vector quan-
tizer chip, which was fabricated in a 0.5μm CMOS process.
The common-mode charge of a floating-gate bump circuit is
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Fig. 3. A: Comparison between the measured 1D bumps (cir-
cles) and the corresponding Gaussian fits (dashed lines) of a sin-
gle floating-gate bump circuit. B: The exponential relation between
the extracted standard deviation and the floating-gate common-mode
charge level. C: Comparison between the measured 1-D bumps (cir-
cles) and the corresponding Gaussian fits (dashed lines) from 16
different floating-gate bump circuits in the same template. D: The
offsets are within 26mV. E: Comparison between the target (dashed
line) and measured (circles) standard deviations. F: The program-
ming errors of the standard deviations are within 5%.
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Fig. 4. A multivariate Gaussian function with a diagonal covariance
matrix can be implemented by cascading the bump circuits. A: The
first and the 16th bumps programmed in Fig. 3C are swept in a 2-D
space. B: The 15th and the 16th bumps programmed in Fig. 3C are
swept in a 2-D space.

programmed to several levels and the measured results are
compared with the correspondent Gaussian fits in Fig. 3A.
The extracted standard deviation is exponentially related to
the common-mode charge, as shown in Fig. 3B. The mini-
mum achievable standard deviation is 40mV, which depends
on the maximum gain of the VGA. After the characterization
process, 16 different floating-gate bump circuits in the same
template can be precisely programmed as shown in Fig. 3C.
The offsets of these 16 bump circuits are within 26mV, as
shown in Fig. 3D. The measured standard deviations are com-
pared with the targets in Fig. 3E. The programmed standard
deviation errors are less than 5%, as shown in Fig. 3F.

The output current of the previous bump circuit is dupli-
cated and fed into the next stage as its tail current to imple-
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Fig. 5. A: The architecture of the resulting programmable analog
vector quantizer. B: The micrograph of a 16 × 16 analog vector
quantizer. C: 16 templates are programmed to have same variances
and heights, and are evenly spaced in a 2-D space. The distributions
are superposed in a 3-D plot. The thick lines at the bottom plane are
the boundaries determined by the WTA outputs.

ment a multivariate Gaussian function with a diagonal covari-
ance matrix, as shown in Fig. 4. Any two of the 16 bump
circuits in the same template can be swept in a 2-D space
while others remain constant to visualize the resulting bivari-
ate distribution in a 3-D plot. Two examples of the 3-D plots
measured from the floating-gate bump circuits, which are pro-
grammed as in Fig. 3C, are also shown in Fig. 4.

2. A 16 × 16 ANALOG VECTOR QUANTIZER

To implement an analog vector quantizer, a current mode
winner-take-all circuit is placed after the floating-gate bump
cell array. To control the maximum likelihood of each tem-
plate in the RBF-based classifier, an “FG-pFET & Mirror”
block is inserted in front of the first floating-gate bump circuit.
The complete architecture and schematics of the analog vec-
tor quantizer are shown in Fig. 5A. Most of the multiplexers
and the overhead circuitries for floating-gate programming
are at the peripheries of the bump cell array. Consequently,
the system can be easily scaled up and is highly compact.

The micrograph of the 16 × 16 analog vector quantizer –
occupying area less than 1.5×1.5 mm2– is shown in Fig. 2B.
In Fig. 2C, 16 templates are programmed to have the same
variances and heights and are evenly programmed in a 2-D
space. The thick lines at the bottom plane indicate the bound-
aries determined by the winner-take-all circuit.

Receiver operating characteristic (ROC) curves, which in-
dicate the whole range of the operating characteristics and
provide a richer measure of classification performance than
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Fig. 6. A: To characterize the classifier performance, two tem-
plates are programmed to have variances of 0.5V with separation
of 1V. The corresponding Gaussian functions are used as the actual
pdf’s of two classes to calculate ROC curves. B: The ROC curves
of the Gaussian functions (squares), bump output currents (circles)
and WTA output voltages (triangles and diamonds). C: The rela-
tion between the power consumption of a single floating-gate bump
cell and the output current. D: The transient response of the analog
vector quantizer when the maximum output current is set to 10 nA.

scalar measures, are adopted to characterize our classifier per-
formance. In the evaluation experiment, two templates are
programmed to have standard deviations of 0.5V with a sep-
aration of 1V in a 2-D plane as shown in Fig. 6A. The corre-
sponding Gaussian distributions are used as the actual proba-
bility density functions (pdf) of these two classes. Comparing
these two Gaussian pdf’s using different thresholds renders an
ROC curve, which is used as the evaluation reference. With
the knowledge of the class distributions, comparing two out-
put currents of the analog RBF-based classifier using differ-
ent thresholds generates an ROC curve for the 2-D bumps.
Comparing each of the two WTA output voltages with differ-
ent thresholds generates two ROC curves that characterize the
performance of the analog vector quantizer. The ROC areas
under these four curves in Fig. 6B are 0.921, 0.869, 0.898,
and 0.876, respectively. The equal error rates (EER), which
are the usual operating points, of these four curves are 0.160,
0.160, 0.159, and 0.159. At the EER point, the performance
of our RBF-based classifier is indistinguishable from that of
an ideal Gaussian-function-based classifier.

3. POWER EFFICIENCY COMPARISON

The power consumption of the floating-gate bump cell is pro-
portional to the output current and the width of the transfer
curve. As shown in Fig. 6C, the larger the extracted standard
deviation, the more the power consumption. The power con-
sumption can be reduced by choosing larger transistor dimen-
sions, which also alleviates the mismatch problem. The speed
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of a single bump stage can be estimated indirectly by apply-
ing input step from different bump cell stages. In Fig. 6D, the
WTA output step response is measured when a voltage step is
applied from the first bump cell stage. When the maximum
output current is 100 nA, the response time of a single bump
cell is estimated as 0.65μsec.

We use the metric of millions of multiply accumulates
per second per milli-watt (MMAC/s/mW) to compare the
efficiency of our analog system with that of the digital hard-
ware. Since the efficiency of the bump cells dominates the
performance when the system is scaled up, we consider
the single bump cell only. Each Gaussian function is esti-
mated as 10 MACs and can be evaluated by a bump cell in
0.65μs with the power consumption of approximately 30μW.
This is equivalent to 513 MMAC/s/mW. The performance
of commercial low-power DSP microprocessors ranges from
1 MMAC/s/mW to 10 MMAC/s/mW. If the comparison is
expanded to include the WTA function and if the WTA cir-
cuit is also optimized, the efficiency of this analog approach
can be at least two to three orders of magnitude better than
digital microprocessors at the same task. Moreover, this
power analysis has not included the power reduction from the
analog-to-digital converters, which is a major factor.

4. AUDIO CLASSIFICATION DEMONSTRATIONS

To demonstrate one possible application of this work, we use
the analog vector quantizer to implement an automatic gender
identification (AGI) classifier, which can be used in automatic
speech or speaker recognition systems to enhance the perfor-
mance. With the available number of templates and feature
dimensions, eight 14-variate Gaussian components are used
to characterize one specific gender. A winner-take-all vot-
ing scheme makes the final decision. The experiment is con-
ducted on the Aurora-2 database [6], which is a standardized
database for speech recognition research. Four hundred ut-
terances from the training set are used to train the models
by means of the maximum likelihood criterion. The speech
data is windowed to 100msec frames and parameterized into
14 order MFCCs, consisting of 13 cepstral coefficients along
with a logarithmic energy value. Although these features are
prepared from a computer in our demonstration, they can be
provided from an analog Cepstrum generator, as proposed in
[7]. Therefore, a highly power-efficient analog audio recog-
nizer front-end is feasible. One thousand utterances from the
testing set are used to evaluate the performance. The confu-
sion matrix is presented in Table 1. The accuracy of the ideal
model on the testing set is 73.7% and the accuracy obtained
from the analog vector quantizer is 69.8%.

5. CONCLUSION

In this paper, we demonstrate a new programmable floating-
gate bump circuit, of which the height, the center and the

Table 1. AGI Results

Gaussian Classifier Analog Vector Quantizer

Counts as Counts as Counts as Counts as
Male Female Male Female

Male 389 111 374 126
Female 152 348 176 324

width of the bell-shaped transfer characteristics can be pro-
grammed individually. Based on the new floating-gate bump
circuit, a compact 16 × 16 analog vector quantizer is fabri-
cated and tested. The performance of the classifiers are eval-
uated and the results are comparable to the digital system.
The efficiency of this analog approach is two orders of mag-
nitude better than digital microprocessors. An automatic gen-
der identification system is demonstrated by using this analog
vector quantizer with an accuracy of just under 70%.
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