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ABSTRACT

This paper presents accurate area and power estimation models for
implementations using FPGAs from the Xilinx Virtex-2Pro family.
These models are designed to facilitate efficient design space explo-
ration in an automated algorithm-architecture codesign framework.
Detailedmodels for accurately estimating the number of slices, block
RAMs and 18x18-bit multipliers for fixed point and floating-point
IP cores have been developed. These models are also utilized to de-
velop accurate power models that consider the effect of logic power,
signal power, clock power and I/O power. In all cases, the model
coefficients have been derived by using curve fitting or regression
analysis. The modeling error for the IP cores is very small (average
0.95%). The error for fairly large examples such as floating point
implementation of 8-point FFTs is also quite small; it is 1.87% for
estimation of number of slices and 3.48% for estimation of power
consumption.

.
Keywords: area and power models, FPGA implementation, IP core,
regression analysis

1. INTRODUCTION

Reconfigurable hardware, especially field programmable gate arrays
(FPGA), are widely used in digital signal processing and scientific
computing applications. They provide an easy and cost-effective
way to evaluate the algorithms from an implementation perspective.
The process is cumbersome; the algorithm description in MATLAB
or C has to be translated to hardware description language and then
synthesized to get accurate area and power numbers. There is only a
handful of automated tools that can support this translation for high
accuracy scientific applications. Even then, the process is time con-
suming – it can take hours for large designs.

In this paper we describe a tool to provide fast and accurate es-
timates of area and power for FPGA based implementations. This
tool is integrated with TANOR [1], which is an automated frame-
work for translating MATLAB descriptions into VHDL. By adding
the modeling aspect to the TANOR tool, the system-level designer
is provided with fairly accurate hardware-related estimates to guide
the algorithm design process.

The need for fast and accurate estimation of area and power has
been recognized by many and there are several estimations tools for
FPGA based implementations. Area models have been developed in
[2], [3]. The area estimation method in [2] is based on lookup table
(LUT) mapping and requires a logic-level netlist. The method in [3]
is at a higher level and develops area models at the data-flow-graph
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level. Unfortunately, the number of operations that are considered
is quite limited. Power models have been developed in [4], [5], [6].
An RT-level power estimator which considers wire capacitance and
switching activity have been considered in [4]. These estimates are
made even better in [5] by considering short-circuit power and leak-
age power. Models for large parametrized IP cores have been pre-
sented in [6], [7]; [6] presents area models and detailed power model
for fast Hadamard transform, and [7] presents area models for dis-
crete Fourier transform IP cores.

The proposed modelling tool is quite general and is built for de-
signs that utilize the parameterizable IP cores from Xilinx. These in-
clude fixed-point and floating-point IP cores for addition/subtraction,
multiplication, square root, reciprocal, round and shift operations.
The area models of the IP cores are represented in terms of models
for number of slices, number of block RAMs (BRAM) and number
of 18x18-bit multipliers. The model for the number of slices is ob-
tained by curve fitting and linear regression. In a large design that
consists of multiple IP cores, the total number of slices is estimated
by an empirical model that also takes into account slice utilization.
The power consumption is modelled into components that are re-
lated to area such as logic power, clock and signal power, and those
that are not related to area such as static power and I/O power. Over-
all, the model is highly accurate. For designs with very high slice
utilization, such as fully pipelined floating point implementation of
8-point FFTs, the error is only 1.87% for estimation of number of
slices and 3.48% for estimation of power consumption.

The rest of the paper is organized as follows. Section 2 presents
the detailed area models for the IP cores followed by models for
system-level area and power consumption. Section 3 validates the
proposed models for LUT intensive designs as well as FFT and DCT
computations. Section 4 offers concluding remarks.

2. MODELLING PROCEDURE

This section presents our models to quickly and accurately estimate
the area and power of implementations on a Xilinx Virtex-2Pro FPGA.
The IP cores that are currently supported are listed in Tables 1 and 2.
We first present models to estimate the area of each IP core followed
by models to estimate the area and power consumption of the whole
design.

In order to develop the models, the IP cores were synthesized
using Xilinx ISE 8.2i and Synplify Pro 8.6.2. In each case, at least
50 configurations were synthesized and implemented, and curve fit-
ting and non linear regression analysis [8] were used to develop the
models of the number of slices. For each IP core, the estimation
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error is given by:

abs. value(
Synthesis result− Estimated result

Synthesis result
)

2.1. AREA MODELLING

The models for estimating area of both fixed point and floating point
IP cores are represented in terms of number of slices, number of
block RAMs and number of 18x18 multipliers.

The following notations are used: FX for “fixed point format”
with I for “integer bits” and F for “fraction bits”, and FP for “float-
ing point format” with E for “exponent bits” and M for “mantissa
bits”. In addition, in() and out() represent the number of input bits
and output bits, respectively.

2.1.1. Fixed Point IP cores

For IP cores using fixed-point data, we have built models for Add/Sub,
Square Root, Round, Fixed-to-Float, Reciprocal, Shifter, Multiplier
and BRAM units.
Number of Slices: The number of occupied slices is one of the most
important metrics for representing the area of a FPGA implementa-
tion. In Virtex-2Pro FPGA, a slice consists of two function gener-
ators configurable as 4-input lookup tables, 16-bit shift registers or
16-bit distributed SelectRAM+ memory, two storage elements con-
figurable as D-flip flops or latches, carry logic, and arithmetic logic
gates.

Let Slice() denote the estimate of the number of slices in an IP
core. For fixed point cores, the relationship between the number of
slices and the parameters is linear for Add/Sub, Round and Shifter;
the relationship is nonlinear for Square Root, Fixed-to-Float and Re-
ciprocal. We provide the expressions for estimating the number of
slices for Adder and Square Root units as representative examples.
Note that the actual number of slices is an integer obtained by round-
ing up the value obtained by these expressions.

Slice(add FX) = max( in1(I + F ), in2(I + F ) )

Slice(sqrt FX) = 0.56 · [ in(I) + 2.00 · in(F ) ]1.8024 + 38.89

The model parameters and the average error for the number of
slices for fixed point IP cores is given in Table 1. Note that the errors
are very small for the individual IP cores.

Table 1. Fixed-point IP cores: Parameters and Errors in estimating
the number of slices

FX cores Model Parameters Avg.Err
Add/Sub in1(I, F ), in2(I, F ) 0.00%
Square Root in(I, F ) 0.10%
Round in(I) 0.00%
Fixed-to-Float in(I, F ) 1.47%
Reciprocal divisor(I, F ), out(F ) 1.58%
Shifter in(I, F ), amount of shift 0.00%

Number of 18x18-bit Multipliers: Virtex-2Pro FPGA provides 18x
18-bit multiplier (MULT18) blocks that are optimized for high-speed
operations and low power consumption. These multipliers are used
automatically by the synthesis tool to realize multiplications in HDL
descriptions.

The MULT18 block supports two data input ports: 18-bit signed
or 17-bit unsigned. The number of MULT18 blocks to implement
the product of in1(I, F ) and in2(I, F ) is given by

M18(mult FX) = �
in1(I + F )

17
� · �

in2(I + F )

17
�

Number of Block RAMs: The Virtex-2Pro FPGA has a total of 444
18-Kb block SelectRAM+ (BRAM) resources. The BRAM has two
types of configurations, the first type contains 2K x 9-b, 1K x 18-
b and 512 x 36-b configurations with access to all 18-Kb memory
locations, the other type contains 16K x 1-b, 8K x 2-b and 4K x 4-b
configurations with access to 16-Kb memory locations.

In order to store a table with n entries and p bits per entry, a
BRAM configuration with greater than n entries is selected and then
multiple BRAMs of that type are utilized to accommodate the p bits
per entry. For instance, if n = 1600, p = 23, we choose the 2k x
9-b configuration and then utilize � 23

9
� = 3 such BRAMs.

2.1.2. Floating Point IP cores

For IP cores using floating point data, we have built models for
Add/Sub, Multipler, Square Root, Reciprocal, Float-to-fixed and Shifter
(see Table 2).

The relationship between the number of slices and the parame-
ters is linear for Add/Sub and Shifter, the relationship is nonlinear for
Reciprocal, Square Root and Float-to-Fixed, and is piecewise linear
for Multiplier. We present the expressions for estimating the number
of slices for Adder, Reciprocal and Multiplier units below.

Slice(add FP ) = 5.40 ·E + 11.06 ·M + 51.20

Slice(recip FP ) = 2.20 ·E + 3.94 ·M1.764 + 14.24

Slice(mult FP ) =

{
5.00 · E + 2.67 · M + 4.00 if M ≤ 17
3.66 · E + 5.46 · M + 24.82 if M > 17

The model parameters as well as the average errors for estimat-
ing the number of slices are given in Table 2. Note that the modeling
error is fairly low except for the square root unit.

Table 2. Floating-point IP cores: Parameters and Errors for estimat-
ing the number of slices

FP cores Model Parameters Avg.Err
Add/Sub E,M 0.74%
Square Root E,M 3.24%
Float-to-Fixed out(I, F ) 1.77%
Reciprocal E,M 1.33%
Shifter E,M , amount of shift 0.00%

The function to calculate the number of MULT18 blocks needed
for floating point multiplication is shown below. Here both the inputs
have the same number of mantissa bits.

M18(mult FP ) = �
M

17
� · �

M

17
�

The number of BRAMs in floating point design is estimated in
the same way as in the fixed point design.

2.2. Total Area Estimation

A typical design consists of multiple components, where each com-
ponent consists of multiple IP cores, MULT18 blocks and BRAMs.
The total number of BRAM modules (TBram) and the total number
of MULT18 blocks (TM18) can be obtained by adding the number of
these modules in each of the components. However, the number of
slices of a complete design cannot be estimated as a sum of the num-
ber of slices in each component. This is because during synthesis,
placement and routing, the Xilinx software automatically optimizes
the design and the optimization procedure is not transparent to the
user. For instance, in a small design, all the LUTs and flipflops in a
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slice are not necessarily utilized. As the design gets larger, more of
the LUTs and flipflops in a slice get utilized and so the number of
slices do not scale proportionately. Thus there is a need to establish
a relationship between slice utilization and the size of a design to
correct this discrepancy.

We developed a simple empirical model based on evaluation of
a large number of candidate designs. We calculated a scaling factor,
α, that is proportional to the number of slices in the design. The
total number of slices, Tslice is then obtained by scaling the total
number of slices obtained by adding the number of slices for each
component in the design by α.

Tslice = α(utilization) ×
∑

Slice()

Let Sslice =
∑

Slice() be used to estimate the “slice utiliza-
tion” of the design. Here we approximate the relationship between
the scaling factor α and Sslice by a damped pendulum function [8]
as follows.

α(utilization) = A · e−β·Sslice · cos(w · (Sslice − φ)) + θ,

where A = 2.374, β = 0.0067, w = 0.468, φ = 266.59, and
θ = 1.128.

2.3. Total Power Estimation

FPGA power consumption depends on the design, and is influenced
by a number of factors such as clock frequency, activity rates, de-
sign density (number of interconnects), logic block and interconnect
structure, power supply voltage levels and output loading[6]. In or-
der to derive the power model, the power of the FPGA implementa-
tions is measured in Xpower. The clock frequency is set to 125MHz,
the activity rate is set to 12.5%, the power supply voltages and output
loading are set to the Xpower default values.

The estimated power is the sum of static power and dynamic
power. The static power is set by Xpower and depends on the spe-
cific FPGA family. The dynamic power is the sum of logic power,
input/output power, signal power and clock power.

In order to derive the power models, we group the power compo-
nents into two categories: (i) those that are not dependent on the area
of a design, including static power and input/output power, and (ii)
those that are proportional to the area of a design, including logic
power, signal power and clock power. The power models for the
components that are proportional to the area of the design are de-
rived by performing nonlinear regression analysis on the area and
power data of the IP cores. In each case, at least 50 configurations
were synthesized to obtain the model parameters.

2.3.1. Power Components not related to Area

Static Power: Xpower has a default static power consumption which
is set to 572.38 mW for a single Virtex-2Pro-100 device (in Xilinx
ISE 8.2i).
Input and Output Power: When chip voltage, clock frequency and
activity rate are fixed, the input power and the output power depends
on the number of Input/Output Blocks (IOBs), which is proportional
to the number of input/output pins in the design. The expressions for
estimating the input and output powers are listed below.

Power input = (input pins) · 0.125 + 1

Power output = (output pins) · 2.25

The average error of input and output power estimates is 5.09%
and 2.13%, respectively.

2.3.2. Power Components related to Area

The majority of the dynamic power comes from logic power, clock
power and signal power, which is greatly affected by the area of the
actual implementation. We develop separate models for implemen-
tations that need block RAM and those that do not. In each case, we
derive the model coefficients using regression analysis.

Implementations wth BRAMs:
Logic Power: Logic power is a function of the number of slices,
block RAMs and MULT18.

Power logic = α1·(Tslice)
c1+α2·(TM18)

c2+α3 ·(TBram)c3+c4

where α1, α2, α3, c1, c2, c3 are constants listed in Table3.
Signal Power / Clock Power: Signal power is proportional to the
number and length of nets over which signal switching occurs. Clock
power depends on the distribution of the clock nets, which depends
on the chip area. We put these two components together since they
are both dependent on the total area of the implementations

Power signal (clock) = α1·(c1·Tslice+c2·TM18+TBram)c3+c4

where α1, c1, c2, c3 and c4 are constants listed in Table 3.

Table 3. Coefficients for power models of implementations with
BRAM
Power α1 α2 α3 c1 c2 c3 c4
Logic 0.033 -1.28e-7 -5.93 1.180 4.213 0.827 -1.26
Signal 0.420 n/a n/a 0.122 -0.423 1.085 9.46
Clock 0.179 n/a n/a 0.198 1.239 1.056 47.47

Implementations without BRAMs:
In designs where no BRAMs are needed, the logic power, sig-

nal power and clock power can be estimated using similar formula;
the actual value of the coefficients are quite different as shown in
Table 4.

Power logic (signal/clock) = (c1 · Tslice + TM18)
c2 + c3

Table 4. Coefficients for power models of implementations without
BRAM

Power c1 c2 c3
Logic 0.073 0.963 -1.647
Signal 0.082 1.032 9.250
Clock 4.231 0.588 -18.729

3. EXPERIMENTAL RESULTS

In this section, we compare the area and power estimates using our
models and those obtained by the actual synthesis followed by P&R
for a representative set of examples. Two groups of experiments
are performed, one is for implementations that require BRAMs such
as lookup table based function evaluations and the other is for im-
plementations that require no BRAM such as 1D Discrete Fourier
Transform, 1D Discrete Cosine Transform and FIR filter.

3.1. Lookup Table based Implementations

We choose two functions that are important in scientific computa-
tions and are implemented using a combination of lookup tables and
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interpolation schemes [9]. The two functions are J0(x) which is the
Bessel function of the first kind with zero order, and e−x which is the
exponential function. We use TANOR tool [1] to generate the HDL
of these two functions when implemented in fixed point format. The
configuration labeled (n, X, Y ) corresponds to the case where n is
the degree of Taylor series, X is the maximum number of total bits
and Y is the maximum number of fraction bits in fixed point format.

Table 5. Resource estimation results for J0(x) and e−x functions
Config. Slices Total Power (mW)

Estim. Synth. Err. Estim. Synth. Err.
J0 (3,64,5) 297 307 3.26% 397 369 7.80%
J0 (3,64,10) 418 441 5.22% 417 406 2.86%
J0 (3,64,15) 779 759 2.64% 508 482 5.50%
J0 (3,64,20) 1258 1113 12.99% 629 583 7.99%
J0 (9,64,5) 1143 1135 0.70% 586 590 0.66%
J0 (9,64,10) 1580 1844 14.30% 707 772 8.35%
J0 (9,64,15) 2057 2437 14.97% 845 945 10.09%
J0 (9,64,20) 4779 4315 10.57% 1589 1437 10.62%
exp(3,64,5) 187 194 3.61% 368 339 8.50%
exp(3,64,10) 291 273 6.58% 391 363 7.79%
exp(3,64,15) 517 465 11.18% 445 424 5.00%
exp(3,64,20) 805 722 11.45% 518 481 7.87%

The comparison results are shown in Table 5. For the 12 con-
figurations shown here, the average error is 8.20% for the number of
slices and 6.98% for the total power. The results of block RAM and
18x18-bit Multipliers are not shown because there is no mismatch
between the estimated and synthesized results, as expected.

3.2. Transform Computations

In this section, we choose two algorithms which are widely used in
digital signal processing: the 8-point FFT (FFT8) and the 8-point
DCT (DCT8). The FFT8 is implemented in floating point; the nota-
tion (E, M) stands for E exponent bits and M mantissa bits. We
also pipelined two FFT8 implementations on a single FPGA to check
our models for situations of extremely large slice utilization (99%).
The DCT8 is implemented in fixed point; the notation (8, 16)means
each input/output port is 8 bits and the internal variables are 16 bits.

Table 6. Resource estimation results for FFT8 and DCT8
Config. Slices Total Power (mW)

Estim. Synth. Err. Estim. Synth. Err.
FFT(8,16) 16515 16808 1.74% 4835 4922 1.75%
FFT(8,18) 18112 18377 1.44% 5230 5244 0.26%
FFT(8,20) 19462 19486 0.12% 5554 5572 0.33%
FFT(8,23) 21480 21622 0.65% 6036 6040 0.06%
2 FFT(8,16) 33030 34219 3.47% 7838 7438 5.38%
2 FFT(8,18) 36225 37389 3.11% 8535 7971 6.98%
2 FFT(8,20) 38925 39680 1.89% 9092 8502 6.94%
2 FFT(8,23) 42961 44066 2.51% 9924 9353 6.01%
DCT(8,16) 431 421 2.38% 896 893 0.36%

Table 6 lists the estimated values, the actual values and the mod-
eling error for both the number of slices and the power consumption
of the two transform examples. For the FFT8 and DCT8 configura-
tions, the average error is 1.92% for the number of slices and 3.14%
for the total power. Note that the error here is lower than the LUT
based implementations presented in Table 5. This is because the

estimate for the number of slices is a lot more accurate when the de-
sign is large and a significant portion of the FPGA slices is utilized.
Since the estimate of the power consumption is closely related to the
estimate of the number of slices, this translates to a fairly accurate
estimate of the power consumption.

4. CONCLUSION

In this paper we have presented area and power estimation mod-
els for IP core based FPGA implementations. These models were
developed to speed up the algorithm-architecture co-exploration for
systems that have to meet area/power/accuracy requirements. The
models consist of parameterized functions that estimate the resource
(number of slices, MULT18, BRAM) for IP cores, and use of these
functions in models to accurately estimate system-level area and
power consumption. The models have been derived using curve fit-
ting and non-linear regression methods. The average error for fairly
large designs (FFT8) is only 1.87% for area estimation and 3.48% for
power estimation. Further more, the time required to generate these
estimates is of the order of microseconds, as compared to minutes
or even hours for designs which undergo actual synthesis followed
by P&R. While all the results presented in this paper are for Xilinx
Virtex-2Pro-100 FPGA, the method can be applied to many other
FPGA platforms as well.
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