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ABSTRACT
In this paper, we propose a systemic approach for synthesizing 
field-programmable gate array (FPGA) implementations of fast 
Fourier transform (FFT) computations. Our approach considers 
both cost (in terms of FPGA resource requirements), and perfor-
mance (in terms of throughput), and optimizes for both of these 
dimensions based on user-specified requirements. Our approach 
involves two orthogonal techniques — FFT inner loop unrolling 
and outer loop unrolling — to perform design space exploration in 
terms of cost and performance. By appropriately combining these 
two forms unrolling, we can achieve cost-optimized FFT imple-
mentations in terms of FPGA slices or block RAMs in FPGA, sub-
ject to the required throughput. We compared the results of our 
synthesis approach with a recently-introduced commercial FPGA 
intellectual property (IP) core — the FFT IP module in the Xilinx 
LogiCore Library, which provides different FFT implementations 
that are optimized for a limited set of performance levels. Our 
results demonstrate efficiency levels that are in some cases better 
than these commercial IP blocks. At the same time, our approach 
provides the advantages of being able to optimize implementations 
based on arbitrary, user-specified performance levels, and of being 
based on general formulations of FFT loop unrolling trade-offs, 
which can be retargeted to different kinds of FPGA devices.

Index Terms — Fast Fourier transform, Field-programmable gate 
arrays, Memory management, High-level synthesis.

1.  INTRODUCTION
The fast Fourier transform (FFT) is one of the most widely-

used and important signal processing functions, for example, in 
applications related to digital communications and image process-
ing. Since the computational complexity of the FFT is 
O N N( ) , where N  the number of inputs, the FFT potentially 
requires multi-cycle processing, and can become a major bottle-
neck for overall system performance. To relieve this bottleneck, 
many commercial IP blocks provide a streaming form of the FFT 
with single-cycle-per-sample throughput. This high-throughput 
form of FFT comes at the expense of increased hardware cost, 
which in turn can lead to costly, over-designed hardware in situa-
tions where single-cycle-per-sample throughput is not required — 
that is, in situations where the FFT bottleneck is significant, but 
not so severe as to require such a high degree of throughput opti-
mization.

This paper develops a systematic approach for generating a 
cost-efficient, FPGA-based FFT implementation based on a 
designer-specified throughput requirement. Our approach care-
fully integrates two orthogonal methods for trading-off hardware 
cost and performance. The first method, which can be viewed as 
outer loop unrolling of the targeted FFT, realizes parallelism by 
instantiating multiple processing cores (dedicated hardware sub-
systems) across FFT butterfly stages. The second method, which 

can be viewed as unrolling of the FFT inner loop, allocates multi-
ple cores within each stage. Each of these methods has advantages 
and drawback compared to the other, and in general, an integrated 
application of both methods can lead to a more cost-effective solu-
tion for a given throughput constraint — e.g., a more cost-effective 
solution compared to a solution that applies only one of these 
methods, or that is based on a the high performance / high cost 
streaming FFT implementation. Furthermore, depending on the 
given throughput constraint, one of these unrolling methods may 
be of more critical utility than the other. 

Motivated by these observations, we develop a comprehensive 
approach to mixing and matching outer and inner-loop unrolling 
for cost-efficient, throughput-constrained synthesis of FPGA hard-
ware. In FPGA synthesis, slices (basic logic cells) and block 
RAMs (BRAMs) are limited, and usage in terms of these two 
resources is important in evaluating hardware cost [3]. Our synthe-
sis approach is prototyped in National Instruments LabVIEW 
FPGA 8.5. LabVIEW is a graphical, dataflow-based programming 
environment for embedded systems design. LabVIEW features for 
HDL (hardware description language) synthesis and fixed point 
data types, along with LabVIEW’s dataflow orientation make the 
tool well-suited to FPGA-based design of signal processing appli-
cations. The output of our techniques for synthesis and optimiza-
tion of FFT configurations is a LabVIEW dataflow diagram that 
specifies the structure and functionality of an optimized FFT con-
figuration. This diagram is then synthesized to an FPGA device by 
first invoking LabVIEW’s HDL synthesis tool, and then mapping 
the resulting HDL code using the platform-specific tools of the tar-
geted FPGA. In our experiments, we have targeted the Xilinx Vir-
tex II Pro FPGA. 

In our experiments, we have compared the targeted cost metric 
— the usage of FPGA slices and BRAMs — between implementa-
tions generated by our novel synthesis flow, and those obtained 
from the Xilinx LogiCore library for identical levels of through-
put. The results demonstrate that our synthesis approach provides 
results that are of similar cost to those from the commercial Logi-
Core library. This is encouraging since our approach provides the 
unique advantage of being synthesis-driven (as opposed to library-
based) so that it can be driven by arbitrary performance levels 
rather than being restricted to a pre-determined subset of FFT con-
figurations. Also, because it is based on an abstract synthesis for-
mulation, it can be retargeted to different FPGA devices — e.g., by 
weighting or otherwise revising the cost function in terms of the 
resources that are most critical for a particular target.

In section 2, we briefly describe background related to the FFT 
algorithm, and related work on VLSI implementations for the FFT. 
Section 3 presents details of the two types of unrolling techniques 
that are applied in our approach to achieve throughput improve-
ment. Section 4 analyzes each unrolling technique in terms of 
hardware costs, and discusses the issue of strategically integrating 
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both unrolling techniques to optimize the cost. Section 5 illustrates 
the result of generated FFT and comparison with Xilinx IP. Section 
6 provides a conclusion of this paper.

2.  BACKGROUND AND RELATED WORK
The discrete Fourier transform (DFT) for N  points is given by

Xk xi WN
ik⋅

i =

N –

= , (1)

where

WN
ik πik– N⁄( )= , and k … N –, , ,= . (2)

The computational complexity of the DFT is O N( ) . The 
radix-2 decimation-in-time fast Fourier transform (FFT) algo-
rithm, illustrated in Figure 1, is widely used to compute the DFT 
with a complexity of O N N( )  [1]. Note that all logarithms n 
this paper have an implicit base of . To implement the FFT algo-
rithm in a hardware, it is required to run a butterfly operation itera-
tively. In implementing the FFT algorithm, careful memory 
management is one important issue. 

Ma [2] developed an efficient method for in-place memory 
management in FFT implementation. In Ma’s approach an in-place 
strategy is employed to store butterfly outputs in the same memory 
locations that are used by the inputs to the butterfly. Such an in-
place strategy is useful in reducing memory requirements, and 
enabling pipelining in terms of memory reads, butterfly opera-
tions, and memory writes. However, Ma's scheme is developed for 
an FFT core that involves a single butterfly unit, so the overall 
approach is limited in terms of throughput improvement. Nordin et 
al. [4] presented a parameterized soft core generator for the FFT 
based on the Peace FFT algorithm with the stride permutation 
approach proposed by Takala et al. [5]. By running multiple butter-
flies simultaneously with a scalable stride permutation, the gener-
ated FFT achieves an effective balance between hardware costs 
and performance features, and is also customizable based on given 
design constraints. Jackson et al. [6] proposed a systolic structure 
to provide for high throughput FFT implementation. 

0

1

2

3
4

5

6

7

0

1

2

3
4

5

6

7

FFT Stage Index
p=0 p=1 p=2

N=8, n=log N=3
Input

indices
for stage 0

Output
indices

for stage 0

Figure 1. Signal flow graph of 8-point FFT with notational 
conventions illustrated. For each stage , the data 
written through an output index for stage  corresponds to the 
data read through an input index for stage .
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A distinguishing aspect of the approach that we develop in this 
paper is the realization of data parallelism with a carefully-config-
ured address generator, and the integration of this address genera-
tion approach with an inner loop unrolling technique. This is in 
contrast, for example, to introducing special permutation struc-
tures for butterfly operations. Our approach, which is especially 

targeted to FPGA implementation, results in efficient utilization of 
FPGA slices.

3.  UNROLLING TECHNIQUES
The radix-2 FFT algorithm involves running the butterfly 

operation iteratively. Using an in-place memory management 
scheme, we roll the butterfly operations within a given stage using 
a for-loop, which we refer to as the inner loop. Across different 
stages, we then employ another for-loop, which we call the outer 
loop. A basic FFT core (BFC) provides dedicated hardware for 
one butterfly operation, and we can execute a BFC iteratively with 
the aforementioned inner and outer for-loops to achieve a com-
plete FFT implementation. However, rather than instantiating just 
one BFC for computing all FFT stages, we can achieve k  times 
throughput improvement by running k  BFCs simultaneously 
across stages, or by incorporating parallelism inside the BFC so 
that multiple butterfly operations can be executed in parallel 
within a given stage. We propose two orthogonal unrolling tech-
niques to allocate and utilize BFCs in an efficient and scalable 
manner on FPGAs. The techniques have different cost functions in 
terms of usage of FPGA slices or BRAMs, and we show that in 
general, the two approaches should be considered jointly for cost-
efficient FPGA-based, FFT implementation.

3.1 Outer Loop Unrolling
The iteration count for the outer for-loop in the FFT is equal to 

the total number of stages, N . Unrolling the outer loop by an 
unrolling factor k >  instantiates k  “sub-FFT” cores. k –( )  of 
of these sub-FFT cores have N k⁄  loop iterations each, 
while the remaining one has N N k⁄ k –( )–( ) itera-
tions. The design of a sub-FFT core is identical to that of the BFC 
design described in [2], except for some initialization details, and 
the iteration count. In this approach, k  sub-FFT cores are running 
in parallel, and up to a factor of k  improvement in throughput can 
be achieved. This approach introduces k  identical copies of the 
sub-FFT core, so that it is expected that a factor of k  increase in 
hardware cost results — in terms of BRAMs and FPGA slices. The 
trade-offs associated with outer loop unrolling are complemented 
by inner loop unrolling, which we elaborate on in the following 
section.

3.2 Inner Loop Unrolling
While unrolling the outer loop is realized by adding more cop-

ies of the sub-FFT core, we unroll the inner loop by executing 
multiple butterfly units in parallel inside a sub-FFT core. That is, 
we parameterize the sub-FFT core with the number of hardware 
butterfly units, and we increase the value of the associated parame-
ter to trade-off increased area for improved throughput. If in-place 
memory management is used, then k  butterfly units within a sub-
FFT core require k  independent (parallel) data memory banks 
(DM banks); however, the amount of storage required in each DM 
bank is reduced by a factor of k  so that the total amount of DM 
bank storage required after inner loop unrolling is unchanged com-
pared with a sub-FFT core that has a single butterfly unit. Note 
that in an FPGA device, each DM bank will normally be imple-
mented by one or more BRAMs [3].

If only a single read-port is available in each DM bank, then to 
simultaneously read two corresponding input values Xu  and Xl  
before a butterfly operation, the two locations must be stored in 
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different DM banks. Ma [2] determined that the indices of two 
inputs, u  and l , for a butterfly unit in the p th stage are identical, 
except for the p th bit in their binary patterns. Thus, if we have two 
DM banks for the butterfly inputs, and if the p th bit of the input 
index is used to select the bank, then the inputs will always arrive 
from different memory banks, which means that they can be read 
in parallel. Moreover, if we derive the memory address by simply 
discarding the p th bit of each input index, and taking the remain-
ing bit pattern, then it is possible to access both inputs for each 
operation from the same address in the two DM banks. This 
reduces the logic needed for address generation.

If x  denotes a binary bit pattern, and y  denotes a non-negative 
integer, let RL x y,( )  denote the bit pattern that results from left-
rotation of x  by y  bit positions, and similarly, let RR x y,( )  denote 
the bit pattern that results from right-rotation of x  by y  bit posi-
tions. Also, for bit patterns x  and x , let CONCAT x x,( )  
denote the concatenation of x  and x . For example, if 
x = , and x = , then RL x ,( ) = , 
RR x ,( ) = , and CONCAT x x,( ) = .

For efficiency in hardware utilization, we restrict the inner 
loop unrolling factor to be a power of ; that is, k r=  for some 
non-negative integer r . Given an inner loop unrolling factor 
k r= , there are k  hardware butterfly units in each parameter-
ized sub-FFT core, and k  DM banks (two for each butterfly 
unit). Let these DM banks have indices … k –( ), , , . Each 
DM bank contains n r– –( )  data locations that are accessed dur-
ing FFT operation, where n N= , and N  is the number of 
sample points involved in the overall FFT computation. Suppose 
that p  is the index of a given FFT stage (i.e., p n –≤ ≤ ); let 
Bp brbr – …b=  be the binary bit pattern of some DM bank 
index in this stage; and let Ap an r– – an r– – …a=  be the bit 
pattern for some DM bank address that is accessed in this stage. 
For clarity, our conventions for input indices, and FFT stage indi-
ces, as well as N  and n  are illustrated in Figure 1. From the above 
definitions, the input index that corresponds to address Ap  in our 
memory management scheme can be derived as 

u RL CONCAT RR Ap p,( ) Bp,( ) p,( )=
an r– – an r– – …apbrbr – …b ap – ap – …a=

(3)
. (4)

With this notation, the least significant bit (LSB) in a given DM 
bank index b , represents the p th bit of the corresponding input 
index in the p th FFT stage. Since two input indices for a given 
butterfly operation in the p th stage are the same except for the 
p th bit, the input index u  and the index l  for the other input in the 
same butterfly operation have their data stored in DM banks 
brbr – …b  and brbr – …b , respectively. These two DM 
banks, whose indices are identical except for their LSBs, are a pair 
of DM banks that are assigned to the same hardware butterfly unit. 
Thus, we entirely avoid any selection logic between DM banks 
and butterfly units. Moreover, two inputs to a given butterfly oper-
ation can be read from the same address because the corresponding 
input indices are identical, except for the p th bit, and the p th bit 
is the one that the selects the DM bank for a given butterfly unit.

After a butterfly operation in the p th stage, the output should 
be written to a DM bank so that it will be ready for the read in the 

p +( ) th stage. In other words, the destined DM bank index and 
the address for writing back an output indexed by u  in the p th 
stage are equivalent, respectively, to the DM bank index and the 

address for reading the input indexed by u  in the next stage, stage 
p +( ) . Thus, the destined DM bank index and its associated 

address for writing butterfly output data can be generated by an 
inverse mapping from (4) with output index u  and stage index 

p +( ) . This inverse mapping is given by 

Bp + apbrbr – …b= , and (5)

Ap + an r– – an r– – …ap + b ap – ap – …a= . (6)
The address, Ap , can be generated efficiently by

Ap RL p,( )= . (7)
Here, the value of  is increased by one every clock 
cycle, so that bit ap  in Ap  is flipped on each clock cycle. This 
provides a resource-efficient mechanism for generating ap , and 
(via (5)), generating the required sequence of Bp +  selections.

4.  COST/PERFORMANCE ANALYSIS
The two orthogonal unrolling techniques developed in the pre-

vious section exhibit different profiles of FPGA resource con-
sumption. While outer loop unrolling pipelines multiple FFT 
cores, inner loop unrolling executes multiple butterfly units in par-
allel inside a single FFT core. Since the inner loop unrolling tech-
nique involves more localized control (i.e., control over a single 
FFT core) it generally consumes less FPGA logic resources com-
pared with the more extensive control structures needed for outer 
loop unrolling. However, inner loop unrolling is less flexible in 
terms of the set of possible unrolling factors — to preserve the 
applicability of our streamlined approach for inner loop memory 
management, the inner loop unrolling factor must be a power of 
two. This requirement makes the range of achievable speedups for 
the inner loop unrolling technique to be limited to powers of two, 
while outer loop unrolling can be applied with arbitrary positive 
integer factors. Thus, for example, if the degree of speedup 
required to achieve the given throughput constraint is not a power 
of two, then a combination of inner-loop and outer-loop unrolling 
may lead to the most cost-effective solution.

Figure 2 shows FPGA slice and BRAM utilization as functions 
of the unrolling factor for both inner and outer loop unrolling. 
These results are obtained after synthesis, and include the stream-
lining effects of our proposed schemes for address generation and 
memory management. For both kinds of unrolling, BRAM and 
FPGA slice utilization increase linearly with the degree of speedup 
achieved (unrolling factor). Also from Figure 2, we see that inner 
loop unrolling is more area-efficient compared to outer loop 
unrolling for the same throughput increase. However, recall that 
inner loop unrolling is restricted to factors that are powers of 2. In 
increasing FFT length, we take advantage of more fully using 
BRAMs in a wider range of inner loop unrolling factors.

For use in analytical design space exploration, the following 
cost functions can be derived from these synthesis results:

uinner sinner uinitial kinner –( )⋅ uinitial+= , and (8)

uouter souter uinitial kouter –( )⋅ uinitial+= . (9)
Here, uinner  and uouter  are the amounts of utilization (FPGA 
slice or BRAM utilization) after inner and outer loop unrolling, 
respectively; uinitial  represents the amount of resource utilization 
without any unrolling; kinner  and kouter  are inner and outer loop 
unrolling factors, respectively; and sinner  (souter ) is a constant 
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factor that represents the slope of the linear plots for inner (outer) 
loop configurations in Figure 2. 

The cost functions in (8) and (9) are for inner and outer loop 
unrolling in isolation. If both forms of unrolling are applied in 
combination, then the total hardware resource requirements can be 
expressed as

ucombined souter uinner kouter –( ) uinner+⋅= , (10)
where uinner  is derived as in (8). The speedup resulting from such 
a combination can be expressed as

kcombined kinner kouter⋅= . (11)
Given a throughput constraint, (10) and (11) can be used to 

efficiently search the space of feasible designs (i.e., designs with 
satisfactory throughput) for a cost-optimal solution. In particular, 
candidate pairs kinner kouter,( )  that satisfy the throughput con-
straint (based on (11)) can be evaluated to select the one that mini-
mizes cost (based on (10). This evaluation can be pruned by noting 
that whenever a particular pair kinner′ kouter′,( )  is found to satisfy 
the throughput constraint, we need not consider any additional 
pairs kinner″ kouter″,( )  such that kinner″ kinner′≥  and 
kouter″ kouter′≥  are both satisfied. This approach allows for very 
rapid, pre-synthesis determination of cost-effective architectures 
for given throughput constraints.

5.  EXPERIMENTAL RESULTS
We have targeted the Xilinx Virtex II Pro P30 embedded in the 

National Instruments PCI-5640R to synthesize implementations 
derived by our architecture generation techniques for the FFT.

Figure 2. Synthesis results from loop unrolling.
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 Fig-
ure 3 shows additional synthesis results from FFT implementa-
tions derived by our proposed techniques. The specific form of 
FFT implemented in these results is a radix-2 FFT with 2048 sam-
ples, with each sample represented as a 16-bit, fixed-point value. 

Figure 3 reports the FPGA resource utilization when the target 
speedup is 6. Note that k  18x18 multipliers are used under an 
unrolling factor of k . We use a target speedup of 6 here because 
the throughput of a sequential implementation (no unrolling) on 
this device is 5.5 cycles per sample, and 6 is the lowest integer 
speedup needed to achieve the common “streaming FFT” target of 
1 cycle per sample. Using the high level exploration approach 
developed in Section 4, and the device-specific slopes and initial 

utilizations from the curves in Figure 2, we can calculate analyti-
cally that when kouter kinner,( )  is equal to ,( )  and ,( ) , 
respectively, then the generated FFT core is optimized in terms of 
FPGA slice usage and BRAM utilization. These results agree with 
the optimal values observed from the two curves from actual syn-
thesis results in Figure 3, thereby demonstrating the accuracy of 
our high level exploration method. To compare our approach with 
relevant commercially-available FFT core, we evaluated the FFT 
core that is available from the Xilinx LogiCore library under the 
two different throughput levels that are available for it — stream-
ing throughput and sequential (resource-optimized) throughput. 
For streaming FFT performance (one cycle per sample through-
put), our approach required 23% less FPGA slices compared to the 
Xilinx core, but 140% more BRAMs. For the sequential perfor-
mance level, our approach required 30% fewer slices, and 17% 
more BRAMs. Note that the latter comparison (“sequential perfor-
mance”) does not include any unrolling, and is therefore essen-
tially a comparison with Ma’s FFT configuration, which is the 
special case of our approach that results when no unrolling is car-
ried out. 

6.  CONCLUSION
In this paper, we have developed a systematic approach for 

generating dedicated FFT subsystems for FPGA implementation. 
Our approach incorporates efficient FFT address generation and 
memory management, and applies two orthogonal loop unrolling 
methods to provide a tunable trade-off between performance and 
FPGA resource costs. We also develop an analytical approach for 
high level design space exploration, which allows one to estimate 
the most resource-efficient FFT architecture configuration for a 
given throughput constraint and a given critical target resource 
(e.g., FPGA BRAM or logic slices). Our methods are demon-
strated through extensive synthesis experiments using the Xilinx 
Virtex II Pro FPGA device family. Our synthesis results quantify 
the cost-performance trade-offs in our proposed class of FFT 
architectures. A distinguishing characteristic of our approach, 
compared to commercially available FFT IP cores and other spe-
cialized FFT implementations, is that we provide a systematic 
method to generate an FPGA-based FFT architecture while taking 
into account trade-offs between performance and cost.
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