
SYSTEMATIC GENERATION OF FPGA-BASED FFT IMPLEMENTATIONS
Hojin Kee1, Newton Petersen2, Jacob Kornerup2, Shuvra S. Bhattacharyya1

1Department of Electrical and Computer Engineering, and Institute for Advanced Computer Studies,
University of Maryland, College Park, 20742, USA.

2National Instruments Corporation, Austin, 78759, USA.
{hjkee, ssb}@umd.edu, {newton.petersen, jacob.kornerup}@ni.com

ABSTRACT
In this paper, we propose a systemic approach for synthesizing
field-programmable gate array (FPGA) implementations of fast
Fourier transform (FFT) computations. Our approach considers
both cost (in terms of FPGA resource requirements), and perfor-
mance (in terms of throughput), and optimizes for both of these
dimensions based on user-specified requirements. Our approach
involves two orthogonal techniques — FFT inner loop unrolling
and outer loop unrolling — to perform design space exploration in
terms of cost and performance. By appropriately combining these
two forms unrolling, we can achieve cost-optimized FFT imple-
mentations in terms of FPGA slices or block RAMs in FPGA, sub-
ject to the required throughput. We compared the results of our
synthesis approach with a recently-introduced commercial FPGA
intellectual property (IP) core — the FFT IP module in the Xilinx
LogiCore Library, which provides different FFT implementations
that are optimized for a limited set of performance levels. Our
results demonstrate efficiency levels that are in some cases better
than these commercial IP blocks. At the same time, our approach
provides the advantages of being able to optimize implementations
based on arbitrary, user-specified performance levels, and of being
based on general formulations of FFT loop unrolling trade-offs,
which can be retargeted to different kinds of FPGA devices.

Index Terms — Fast Fourier transform, Field-programmable gate
arrays, Memory management, High-level synthesis.

1. INTRODUCTION
The fast Fourier transform (FFT) is one of the most widely-

used and important signal processing functions, for example, in
applications related to digital communications and image process-
ing. Since the computational complexity of the FFT is
O N N() , where N the number of inputs, the FFT potentially
requires multi-cycle processing, and can become a major bottle-
neck for overall system performance. To relieve this bottleneck,
many commercial IP blocks provide a streaming form of the FFT
with single-cycle-per-sample throughput. This high-throughput
form of FFT comes at the expense of increased hardware cost,
which in turn can lead to costly, over-designed hardware in situa-
tions where single-cycle-per-sample throughput is not required —
that is, in situations where the FFT bottleneck is significant, but
not so severe as to require such a high degree of throughput opti-
mization.

This paper develops a systematic approach for generating a
cost-efficient, FPGA-based FFT implementation based on a
designer-specified throughput requirement. Our approach care-
fully integrates two orthogonal methods for trading-off hardware
cost and performance. The first method, which can be viewed as
outer loop unrolling of the targeted FFT, realizes parallelism by
instantiating multiple processing cores (dedicated hardware sub-
systems) across FFT butterfly stages. The second method, which

can be viewed as unrolling of the FFT inner loop, allocates multi-
ple cores within each stage. Each of these methods has advantages
and drawback compared to the other, and in general, an integrated
application of both methods can lead to a more cost-effective solu-
tion for a given throughput constraint — e.g., a more cost-effective
solution compared to a solution that applies only one of these
methods, or that is based on a the high performance / high cost
streaming FFT implementation. Furthermore, depending on the
given throughput constraint, one of these unrolling methods may
be of more critical utility than the other.

Motivated by these observations, we develop a comprehensive
approach to mixing and matching outer and inner-loop unrolling
for cost-efficient, throughput-constrained synthesis of FPGA hard-
ware. In FPGA synthesis, slices (basic logic cells) and block
RAMs (BRAMs) are limited, and usage in terms of these two
resources is important in evaluating hardware cost [3]. Our synthe-
sis approach is prototyped in National Instruments LabVIEW
FPGA 8.5. LabVIEW is a graphical, dataflow-based programming
environment for embedded systems design. LabVIEW features for
HDL (hardware description language) synthesis and fixed point
data types, along with LabVIEW’s dataflow orientation make the
tool well-suited to FPGA-based design of signal processing appli-
cations. The output of our techniques for synthesis and optimiza-
tion of FFT configurations is a LabVIEW dataflow diagram that
specifies the structure and functionality of an optimized FFT con-
figuration. This diagram is then synthesized to an FPGA device by
first invoking LabVIEW’s HDL synthesis tool, and then mapping
the resulting HDL code using the platform-specific tools of the tar-
geted FPGA. In our experiments, we have targeted the Xilinx Vir-
tex II Pro FPGA.

In our experiments, we have compared the targeted cost metric
— the usage of FPGA slices and BRAMs — between implementa-
tions generated by our novel synthesis flow, and those obtained
from the Xilinx LogiCore library for identical levels of through-
put. The results demonstrate that our synthesis approach provides
results that are of similar cost to those from the commercial Logi-
Core library. This is encouraging since our approach provides the
unique advantage of being synthesis-driven (as opposed to library-
based) so that it can be driven by arbitrary performance levels
rather than being restricted to a pre-determined subset of FFT con-
figurations. Also, because it is based on an abstract synthesis for-
mulation, it can be retargeted to different FPGA devices — e.g., by
weighting or otherwise revising the cost function in terms of the
resources that are most critical for a particular target.

In section 2, we briefly describe background related to the FFT
algorithm, and related work on VLSI implementations for the FFT.
Section 3 presents details of the two types of unrolling techniques
that are applied in our approach to achieve throughput improve-
ment. Section 4 analyzes each unrolling technique in terms of
hardware costs, and discusses the issue of strategically integrating

14131-4244-1484-9/08/$25.00 ©2008 IEEE ICASSP 2008

both unrolling techniques to optimize the cost. Section 5 illustrates
the result of generated FFT and comparison with Xilinx IP. Section
6 provides a conclusion of this paper.

2. BACKGROUND AND RELATED WORK
The discrete Fourier transform (DFT) for N points is given by

Xk xi WN
ik⋅

i =

N –

= , (1)

where

WN
ik πik– N⁄()= , and k … N –, , ,= . (2)

The computational complexity of the DFT is O N() . The
radix-2 decimation-in-time fast Fourier transform (FFT) algo-
rithm, illustrated in Figure 1, is widely used to compute the DFT
with a complexity of O N N() [1]. Note that all logarithms n
this paper have an implicit base of . To implement the FFT algo-
rithm in a hardware, it is required to run a butterfly operation itera-
tively. In implementing the FFT algorithm, careful memory
management is one important issue.

Ma [2] developed an efficient method for in-place memory
management in FFT implementation. In Ma’s approach an in-place
strategy is employed to store butterfly outputs in the same memory
locations that are used by the inputs to the butterfly. Such an in-
place strategy is useful in reducing memory requirements, and
enabling pipelining in terms of memory reads, butterfly opera-
tions, and memory writes. However, Ma's scheme is developed for
an FFT core that involves a single butterfly unit, so the overall
approach is limited in terms of throughput improvement. Nordin et
al. [4] presented a parameterized soft core generator for the FFT
based on the Peace FFT algorithm with the stride permutation
approach proposed by Takala et al. [5]. By running multiple butter-
flies simultaneously with a scalable stride permutation, the gener-
ated FFT achieves an effective balance between hardware costs
and performance features, and is also customizable based on given
design constraints. Jackson et al. [6] proposed a systolic structure
to provide for high throughput FFT implementation.

0

1

2

3
4

5

6

7

0

1

2

3
4

5

6

7

FFT Stage Index
p=0 p=1 p=2

N=8, n=log N=3
Input

indices
for stage 0

Output
indices

for stage 0

Figure 1. Signal flow graph of 8-point FFT with notational
conventions illustrated. For each stage , the data
written through an output index for stage corresponds to the
data read through an input index for stage .

p n –()<
p

p +()

A distinguishing aspect of the approach that we develop in this
paper is the realization of data parallelism with a carefully-config-
ured address generator, and the integration of this address genera-
tion approach with an inner loop unrolling technique. This is in
contrast, for example, to introducing special permutation struc-
tures for butterfly operations. Our approach, which is especially

targeted to FPGA implementation, results in efficient utilization of
FPGA slices.

3. UNROLLING TECHNIQUES
The radix-2 FFT algorithm involves running the butterfly

operation iteratively. Using an in-place memory management
scheme, we roll the butterfly operations within a given stage using
a for-loop, which we refer to as the inner loop. Across different
stages, we then employ another for-loop, which we call the outer
loop. A basic FFT core (BFC) provides dedicated hardware for
one butterfly operation, and we can execute a BFC iteratively with
the aforementioned inner and outer for-loops to achieve a com-
plete FFT implementation. However, rather than instantiating just
one BFC for computing all FFT stages, we can achieve k times
throughput improvement by running k BFCs simultaneously
across stages, or by incorporating parallelism inside the BFC so
that multiple butterfly operations can be executed in parallel
within a given stage. We propose two orthogonal unrolling tech-
niques to allocate and utilize BFCs in an efficient and scalable
manner on FPGAs. The techniques have different cost functions in
terms of usage of FPGA slices or BRAMs, and we show that in
general, the two approaches should be considered jointly for cost-
efficient FPGA-based, FFT implementation.

3.1 Outer Loop Unrolling
The iteration count for the outer for-loop in the FFT is equal to

the total number of stages, N . Unrolling the outer loop by an
unrolling factor k > instantiates k “sub-FFT” cores. k –() of
of these sub-FFT cores have N k⁄ loop iterations each,
while the remaining one has N N k⁄ k –()–() itera-
tions. The design of a sub-FFT core is identical to that of the BFC
design described in [2], except for some initialization details, and
the iteration count. In this approach, k sub-FFT cores are running
in parallel, and up to a factor of k improvement in throughput can
be achieved. This approach introduces k identical copies of the
sub-FFT core, so that it is expected that a factor of k increase in
hardware cost results — in terms of BRAMs and FPGA slices. The
trade-offs associated with outer loop unrolling are complemented
by inner loop unrolling, which we elaborate on in the following
section.

3.2 Inner Loop Unrolling
While unrolling the outer loop is realized by adding more cop-

ies of the sub-FFT core, we unroll the inner loop by executing
multiple butterfly units in parallel inside a sub-FFT core. That is,
we parameterize the sub-FFT core with the number of hardware
butterfly units, and we increase the value of the associated parame-
ter to trade-off increased area for improved throughput. If in-place
memory management is used, then k butterfly units within a sub-
FFT core require k independent (parallel) data memory banks
(DM banks); however, the amount of storage required in each DM
bank is reduced by a factor of k so that the total amount of DM
bank storage required after inner loop unrolling is unchanged com-
pared with a sub-FFT core that has a single butterfly unit. Note
that in an FPGA device, each DM bank will normally be imple-
mented by one or more BRAMs [3].

If only a single read-port is available in each DM bank, then to
simultaneously read two corresponding input values Xu and Xl
before a butterfly operation, the two locations must be stored in

1414

different DM banks. Ma [2] determined that the indices of two
inputs, u and l , for a butterfly unit in the p th stage are identical,
except for the p th bit in their binary patterns. Thus, if we have two
DM banks for the butterfly inputs, and if the p th bit of the input
index is used to select the bank, then the inputs will always arrive
from different memory banks, which means that they can be read
in parallel. Moreover, if we derive the memory address by simply
discarding the p th bit of each input index, and taking the remain-
ing bit pattern, then it is possible to access both inputs for each
operation from the same address in the two DM banks. This
reduces the logic needed for address generation.

If x denotes a binary bit pattern, and y denotes a non-negative
integer, let RL x y,() denote the bit pattern that results from left-
rotation of x by y bit positions, and similarly, let RR x y,() denote
the bit pattern that results from right-rotation of x by y bit posi-
tions. Also, for bit patterns x and x , let CONCAT x x,()
denote the concatenation of x and x . For example, if
x = , and x = , then RL x ,() = ,
RR x ,() = , and CONCAT x x,() = .

For efficiency in hardware utilization, we restrict the inner
loop unrolling factor to be a power of ; that is, k r= for some
non-negative integer r . Given an inner loop unrolling factor
k r= , there are k hardware butterfly units in each parameter-
ized sub-FFT core, and k DM banks (two for each butterfly
unit). Let these DM banks have indices … k –(), , , . Each
DM bank contains n r– –() data locations that are accessed dur-
ing FFT operation, where n N= , and N is the number of
sample points involved in the overall FFT computation. Suppose
that p is the index of a given FFT stage (i.e., p n –≤ ≤); let
Bp brbr – …b= be the binary bit pattern of some DM bank
index in this stage; and let Ap an r– – an r– – …a= be the bit
pattern for some DM bank address that is accessed in this stage.
For clarity, our conventions for input indices, and FFT stage indi-
ces, as well as N and n are illustrated in Figure 1. From the above
definitions, the input index that corresponds to address Ap in our
memory management scheme can be derived as

u RL CONCAT RR Ap p,() Bp,() p,()=
an r– – an r– – …apbrbr – …b ap – ap – …a=

(3)
. (4)

With this notation, the least significant bit (LSB) in a given DM
bank index b , represents the p th bit of the corresponding input
index in the p th FFT stage. Since two input indices for a given
butterfly operation in the p th stage are the same except for the
p th bit, the input index u and the index l for the other input in the
same butterfly operation have their data stored in DM banks
brbr – …b and brbr – …b , respectively. These two DM
banks, whose indices are identical except for their LSBs, are a pair
of DM banks that are assigned to the same hardware butterfly unit.
Thus, we entirely avoid any selection logic between DM banks
and butterfly units. Moreover, two inputs to a given butterfly oper-
ation can be read from the same address because the corresponding
input indices are identical, except for the p th bit, and the p th bit
is the one that the selects the DM bank for a given butterfly unit.

After a butterfly operation in the p th stage, the output should
be written to a DM bank so that it will be ready for the read in the

p +() th stage. In other words, the destined DM bank index and
the address for writing back an output indexed by u in the p th
stage are equivalent, respectively, to the DM bank index and the

address for reading the input indexed by u in the next stage, stage
p +() . Thus, the destined DM bank index and its associated

address for writing butterfly output data can be generated by an
inverse mapping from (4) with output index u and stage index

p +() . This inverse mapping is given by

Bp + apbrbr – …b= , and (5)

Ap + an r– – an r– – …ap + b ap – ap – …a= . (6)
The address, Ap , can be generated efficiently by

Ap RL p,()= . (7)
Here, the value of is increased by one every clock
cycle, so that bit ap in Ap is flipped on each clock cycle. This
provides a resource-efficient mechanism for generating ap , and
(via (5)), generating the required sequence of Bp + selections.

4. COST/PERFORMANCE ANALYSIS
The two orthogonal unrolling techniques developed in the pre-

vious section exhibit different profiles of FPGA resource con-
sumption. While outer loop unrolling pipelines multiple FFT
cores, inner loop unrolling executes multiple butterfly units in par-
allel inside a single FFT core. Since the inner loop unrolling tech-
nique involves more localized control (i.e., control over a single
FFT core) it generally consumes less FPGA logic resources com-
pared with the more extensive control structures needed for outer
loop unrolling. However, inner loop unrolling is less flexible in
terms of the set of possible unrolling factors — to preserve the
applicability of our streamlined approach for inner loop memory
management, the inner loop unrolling factor must be a power of
two. This requirement makes the range of achievable speedups for
the inner loop unrolling technique to be limited to powers of two,
while outer loop unrolling can be applied with arbitrary positive
integer factors. Thus, for example, if the degree of speedup
required to achieve the given throughput constraint is not a power
of two, then a combination of inner-loop and outer-loop unrolling
may lead to the most cost-effective solution.

Figure 2 shows FPGA slice and BRAM utilization as functions
of the unrolling factor for both inner and outer loop unrolling.
These results are obtained after synthesis, and include the stream-
lining effects of our proposed schemes for address generation and
memory management. For both kinds of unrolling, BRAM and
FPGA slice utilization increase linearly with the degree of speedup
achieved (unrolling factor). Also from Figure 2, we see that inner
loop unrolling is more area-efficient compared to outer loop
unrolling for the same throughput increase. However, recall that
inner loop unrolling is restricted to factors that are powers of 2. In
increasing FFT length, we take advantage of more fully using
BRAMs in a wider range of inner loop unrolling factors.

For use in analytical design space exploration, the following
cost functions can be derived from these synthesis results:

uinner sinner uinitial kinner –()⋅ uinitial+= , and (8)

uouter souter uinitial kouter –()⋅ uinitial+= . (9)
Here, uinner and uouter are the amounts of utilization (FPGA
slice or BRAM utilization) after inner and outer loop unrolling,
respectively; uinitial represents the amount of resource utilization
without any unrolling; kinner and kouter are inner and outer loop
unrolling factors, respectively; and sinner (souter) is a constant

1415

factor that represents the slope of the linear plots for inner (outer)
loop configurations in Figure 2.

The cost functions in (8) and (9) are for inner and outer loop
unrolling in isolation. If both forms of unrolling are applied in
combination, then the total hardware resource requirements can be
expressed as

ucombined souter uinner kouter –() uinner+⋅= , (10)
where uinner is derived as in (8). The speedup resulting from such
a combination can be expressed as

kcombined kinner kouter⋅= . (11)
Given a throughput constraint, (10) and (11) can be used to

efficiently search the space of feasible designs (i.e., designs with
satisfactory throughput) for a cost-optimal solution. In particular,
candidate pairs kinner kouter,() that satisfy the throughput con-
straint (based on (11)) can be evaluated to select the one that mini-
mizes cost (based on (10). This evaluation can be pruned by noting
that whenever a particular pair kinner′ kouter′,() is found to satisfy
the throughput constraint, we need not consider any additional
pairs kinner″ kouter″,() such that kinner″ kinner′≥ and
kouter″ kouter′≥ are both satisfied. This approach allows for very
rapid, pre-synthesis determination of cost-effective architectures
for given throughput constraints.

5. EXPERIMENTAL RESULTS
We have targeted the Xilinx Virtex II Pro P30 embedded in the

National Instruments PCI-5640R to synthesize implementations
derived by our architecture generation techniques for the FFT.

Figure 2. Synthesis results from loop unrolling.

Slice Utilization

0
1000
2000
3000
4000
5000
6000

1 2 3 4 5 6 7 8

Unrolling factor k

BRAM Utilization

0

10

20

30

40

1 2 3 4 5 6 7 8
Unrolling factor k

Unro lling
Outer loop

Unro lling
Inner Loop

Figure 3. Synthesis report from the combined unroll-
ing technique when the target speedup is 6. (N=2048)

Slice Utilization

2800

3300

3800

4300

4800

5300

(6,1) (3,2) (2,4) (1,8)

A pair of unrolling factors
(k_outer, k_inner)

BRAM Utilization

0

10

20

30

40

(6,1) (3,2) (2,4) (1,8)

A pair of unrolling factors
(k_outer, k_inner)

 Fig-
ure 3 shows additional synthesis results from FFT implementa-
tions derived by our proposed techniques. The specific form of
FFT implemented in these results is a radix-2 FFT with 2048 sam-
ples, with each sample represented as a 16-bit, fixed-point value.

Figure 3 reports the FPGA resource utilization when the target
speedup is 6. Note that k 18x18 multipliers are used under an
unrolling factor of k . We use a target speedup of 6 here because
the throughput of a sequential implementation (no unrolling) on
this device is 5.5 cycles per sample, and 6 is the lowest integer
speedup needed to achieve the common “streaming FFT” target of
1 cycle per sample. Using the high level exploration approach
developed in Section 4, and the device-specific slopes and initial

utilizations from the curves in Figure 2, we can calculate analyti-
cally that when kouter kinner,() is equal to ,() and ,() ,
respectively, then the generated FFT core is optimized in terms of
FPGA slice usage and BRAM utilization. These results agree with
the optimal values observed from the two curves from actual syn-
thesis results in Figure 3, thereby demonstrating the accuracy of
our high level exploration method. To compare our approach with
relevant commercially-available FFT core, we evaluated the FFT
core that is available from the Xilinx LogiCore library under the
two different throughput levels that are available for it — stream-
ing throughput and sequential (resource-optimized) throughput.
For streaming FFT performance (one cycle per sample through-
put), our approach required 23% less FPGA slices compared to the
Xilinx core, but 140% more BRAMs. For the sequential perfor-
mance level, our approach required 30% fewer slices, and 17%
more BRAMs. Note that the latter comparison (“sequential perfor-
mance”) does not include any unrolling, and is therefore essen-
tially a comparison with Ma’s FFT configuration, which is the
special case of our approach that results when no unrolling is car-
ried out.

6. CONCLUSION
In this paper, we have developed a systematic approach for

generating dedicated FFT subsystems for FPGA implementation.
Our approach incorporates efficient FFT address generation and
memory management, and applies two orthogonal loop unrolling
methods to provide a tunable trade-off between performance and
FPGA resource costs. We also develop an analytical approach for
high level design space exploration, which allows one to estimate
the most resource-efficient FFT architecture configuration for a
given throughput constraint and a given critical target resource
(e.g., FPGA BRAM or logic slices). Our methods are demon-
strated through extensive synthesis experiments using the Xilinx
Virtex II Pro FPGA device family. Our synthesis results quantify
the cost-performance trade-offs in our proposed class of FFT
architectures. A distinguishing characteristic of our approach,
compared to commercially available FFT IP cores and other spe-
cialized FFT implementations, is that we provide a systematic
method to generate an FPGA-based FFT architecture while taking
into account trade-offs between performance and cost.

7. REFERENCES
[1] J. W. Cooley and J. W. Tukey, “An algorithm for the machine
calculation of complex Fourier series,” Mathematics of Computa-
tion, Vol. 19, No. 90, 297-301, 1965.
[2] Y. Ma, “An Effective Memory Addressing Scheme for FFT
Processors,” IEEE Transactions on Signal Processing, vol. 47,
Issue 3, pp. 907-911, March 1999.
[3] W. Wolf. FPGA-Based System Design. Prentice Hall, 2004.
[4] G. Nordin, P. A. Milder, J. C. Hoe, M. Puschel, “Automatic
Generation of Customized Discrete Fourier Transform IPs”,
Design Automation Conference, pp. 471- 474, 2005.
[5] J. Takala, T. Jarvinen, P. Salmela, and D. Akopian. Multi-port
interconnection networks for radix-r algorithms. In Proc. IEEE
Intl. Conf. Acoustics, Speech, Signal Processing, 2001.
[6] P. A. Jackson, C. P. Chan, J. E. Scalera, C. M. Rader, and M.
M. Vai, “A Systolic FFT Architecture for Real Time FPGA Sys-
tems”, High Performance Embedded Computing Workshop, 2004.

1416

