
EFFICIENT ASSIGNMENT ALGORITHM FORMAPPING
MULTIDIMENSIONAL SIGNALS INTO THE PHYSICALMEMORY∗

Ilie I. Luican∗ Hongwei Zhu† Florin Balasa‡

∗ Dept. of Computer Science, University of Illinois at Chicago, Chicago, IL
† ARM, Inc., Sunnyvale, CA

‡ Dept. of Computer Science, Southern Utah University, Cedar City, UT

ABSTRACT

The storage requirements in data-intensive multidimensional sig-
nal processing systems have a significant impact on the system
performance as well as on essential design parameters, like the
overall power consumption and chip area. This paper addresses
the problem of efficiently mapping the multidimensional signals
from the algorithmic specification of the system into the physical
memory. Different from all the previous mapping models that aim
to optimize the memory sharing between the elements of a same
array, this proposed assignment algorithm takes also into account
the possibility of memory sharing between different arrays. As
a consequence, the experiments with this novel signal-to-memory
mapping approach exhibit important savings of data storage re-
sulted after mapping.

Index terms– Memory management, signal-to-memory map-
ping, multidimensional signal processing, storage requirement

1. INTRODUCTION

The multidimensional signal processing applications are algorith-
mically specified in high-level programming languages, the main
data structures being multidimensional arrays. Since these (typi-
cally large) arrays must be stored during the execution of the ap-
plication code, an important memory management problem is the
mapping of the arrays into the physical memory [1]. The goals of
this operation are the following:

(1) to map the arrays from the behavioral specification into an
amount of data storage as small as possible;

(2) to use mapping functions simple enough in order to ensure
an address generation hardware of a reasonable complexity;

(3) to ascertain that any distinct scalar signals (array elements)
simultaneously alive are mapped to distinct storage locations. The
lifetime of a scalar signal is the time interval between the clock
cycles when the scalar is produced or written, and when is read
for the last time, i.e. consumed, during the code execution. Two
scalars are simultaneously alive if their lifetimes do overlap. Ob-
viously, in such a case, they must occupy different memory loca-
tions; otherwise, they can share the same location.

∗This research was sponsored by the U.S. National Science Foundation (DAP
0133318).

Several mapping models have been proposed in the past, trading
off between the first two goals (that is, accepting a certain excess
of storage to ensure a less complex address generation hardware)
while ascertaining that the third goal is strictly satisfied.

De Greef et al. analyze the canonical linearizations1 of the ar-
rays in the algorithmic specification and, for each linearization,
the largest distance between two simultaneously alive array ele-
ments is computed [2]. The minimum (over all the canonical lin-
earizations of the array) largest distance plus 1 is the size of a stor-
age window where the array can be mapped into the data mem-
ory without any conflict (i.e., simultaneously alive elements are
stored in distinct locations). The linearization yielding the mini-
mum largest distance is finally selected. The values of the map-
ping function are the positions of the array elements in the selected
linearization, followed by a modulo operation (whose operand is
the corresponding distance plus 1) that wraps the set of “virtual”
memory locations into a smaller set of actual physical locations.
Since the number of analyzed linearizations (2m · m!) increases
fast with the signal dimension m, the computation times implied
by this mapping model can be significant.

In order to avoid the inconvenience of analyzing differ-
ent linearization schemes, Tronçon et al. proposed to compute
an m-dimensional bounding box (window) in the original m-
dimensional index space of the array [3]. The elements of this
window are computed separately, and they are the largest index
differences between simultaneously alive elements in each dimen-
sion, plus 1. If this mapping window of an m-dimensional array
A is W = (w1, . . . , wm), the window elements wi are used as
operands in modulo operations that redirect all accesses to the ar-
ray. For instance, an access to the element A[index1] . . . [indexm]
is redirected to A[index1 mod w1] . . . [indexm mod wm] (rela-
tive to a base address in the data memory). The way the win-
dow elements are computed ensures that any two distinct array
elements simultaneously alive cannot be redirected to the same
storage location.

Lefebvre and Feautrier, addressing parallelization of static con-
trol programs, developed in [4] an approach based on modular
mapping, as well. They first compute the lexicographically max-
imal “time delay” between the write and the last read operations,

1The row and, respectively, the column concatenations of a 2-D array are canon-
ical linearizations.

14091-4244-1484-9/08/$25.00 ©2008 IEEE ICASSP 2008

which is a super-approximation of the distance between conflict-
ing index vectors [5] (i.e., whose corresponding array elements are
simultaneously alive).

Darte et al. proposed a very refined mathematical framework,
establishing a correspondence between valid linear storage allo-
cations and integer lattices called strictly admissible relative to
the set of differences of the conflicting indices [5]. Heuristic
techniques for building strictly admissible integer lattices (hence,
building valid storage allocations) are proposed.

Luican et al. proposed a technique based on lattice decompo-
sition which can be used to implement both mapping approaches
[2] and [3], while being significantly faster [6]. In addition, this
technique can be extended to deal with signal mapping into a hi-
erarchical memory organization.

These signal-to-memory mapping approaches treat separately
the arrays from the algorithmic specification, computing windows
in the physical memory for each individual array. They exploit
the possibility of memory sharing between the elements of a same
array. However, since the arrays are handled separately, the pos-
sibility of memory sharing between elements of different arrays
is inherently ignored. This can lead to an excessive data storage,
as Section 2 will illustrate. Interestingly, the possibility of mem-
ory sharing between elements of different arrays with disjoint life-
times was observed long time ago [1] and it has been taken into ac-
count by several approaches for memory size evaluation (e.g., [7],
[8]). However, the inter-array memory sharing is more difficult
to achieve during signal-to-memory assignment, since an explicit
correspondence between the array elements and their addresses in
the physical memory must be indicated.

This paper presents a novel signal-to-memory assignment algo-
rithm that can take into account the possibility of memory sharing
between elements of different arrays, even when the arrays do not
have disjoint lifetimes. The rest of the paper is organized as fol-
lows. Section 2 discusses an illustrative example, analyzing the
results of two past mapping techniques and explaining the moti-
vation of this research. Section 3 presents the basic ideas of this
novel assignment algorithm. Section 4 addresses implementation
aspects and discusses the experimental results. Section 5 summa-
rizes the main conclusions of this work.

2. DISCUSSION ON AN ILLUSTRATIVE EXAMPLE

In the illustrative example in Fig. 1, the A-elements produced in
the first loop nest are consumed in the second loop nest; the B-
elements produced in the second loop nest are consumed in the
third loop nest; the C-elements are produced and consumed in
the third loop nest. The variation of the storage requirement as a
function of the number of executed assignments is shown in Fig. 2.
If we handle the three arrays independent of each other, the storage
requirement for A is 16 memory locations, for B is 25 locations,
whereas C needs 18 locations (since at most 18 C-elements are
simultaneously alive). Assuming that the three arrays are stored
in separate windows of the physical memory, the minimum data
memory for the whole code in Fig. 1 is 16+25+18=59 locations.
Otherwise, since the three arrays can share data memory due to
the different lifetimes of their elements, the minimum data storage

int A[7][4], B[9][5], C[11][6] ;
for (i=0; i<=6; i++) // The first loop nest
 for (j=0; j<=3; j++)
 if (3<=i+j && i+j<=6) A[i][j] = 16 ;
for (i=0; i<=8; i++) // The second loop nest
 for (j=0; j<=4; j++)
 if (4<=i+j && i+j<=8)
 if (i<=3) B[i][j] = A[i][j-1] + A[6-i][4-j] ;
 else A[i][j] = 32 ;
for (i=0; i<=13; i++) // The third loop nest
 for (j=0; j<=5; j++)
 { if (5<=i+j && i+j<=10)
 if (i<=4) C[i][j] = B[i][j-1] + B[8-i][5-j] ;
 else C[i][j] = 64 ;
 if (8<=i+j && i+j<=13) ... = C[i-3][j] ;
 }

Figure 1: Illustrative example.

 0

 5

 10

 15

 20

 25

 0 20 40 60 80 100 120

"memory"

Figure 2: Memory trace [8] for the illustrative example.

ensuring the code execution is only 25 locations, as shown by the
graph in Fig. 2.

The minimum data storage (of 25 locations for this example)
represents the tight lower bound for which the execution of the
code is possible. However, in practice, this amount of storage is
difficult to reach (although still possible!) since it would require
a complex control and hardware for address generation. Instead,
the designers apply more regular signal-to-memory mapping tech-
niques to compute the physical addresses in the data memory for
the array elements in the application code. These mapping models
actually trade-off an excess of storage for a less complex address
generation hardware. The results given by two mapping tech-
niques – briefly described in Section 1 – will be discussed below.

(1) The assignment model [2] analyzes the canonical lineariza-
tions of A, B, and C, measuring the maximum distance between
the simultaneously alive elements, relative to the respective lin-
earizations. For instance, the maximum distance for signal A is 21
(e.g., between the elements A[0][3] and A[6][0] in the linearization
by row concatenation). Therefore, a linear window of 21+1=22
would suffice to ensure that the simultaneously alive elements are
stored in distinct locations. Possible mappings are A[i][j] �→
MemA[(4i+j) mod 22] or A[i][j] �→ MemA[(7j+ i) mod 22],
where MemA is the address of a memory window assigned to
signal A. Similarly, signal B needs a memory window of 37

1410

locations. Indeed, the maximum distance between live elements
is 36 (e.g., between the elements B[4][0] and B[4][4] in the lin-
earization by column concatenation). Finally, signal C needs a
memory window of 19 locations since the maximum distance be-
tween live C-elements is 18 (for instance, between the elements
C[3][4] and C[6][4] – by row concatenation – in the iteration (i
, j) = (6 , 4) of the third loop nest, before the consumption of
C[3][4]). For this example, the model [2] yields a data memory of
|MemA| + |MemB| + |MemC |=22+37+19=78 locations.

(2) The assignment model [3] computes 2-D windows for the
signals A, B, and C, large enough along each dimension to bound
their elements simultaneously alive. For signal C, the maximum
distance for each index between live elements are d1 = 3 and
d2 = 5 (since C[3][4] and C[6][4] are simultaneously alive, and
also C[5][0] and C[5][5]). The bounding window of C com-
puted by the model is WC = (d1 + 1, d2 + 1) = (4, 6). Each
array element is first mapped into this window: C[i][j] �→
WC [i mod 4][j mod 6]; in its turn, the window is mapped into
the physical memory by a typical canonical linearization (row
or column concatenation). The overall storage requirement is
|MemA| + |MemB| + |MemC |=28+66+24=118 locations.

Actually, the signals A and C in the illustrative example have
disjoint lifetimes. Also, many B- and C-elements have disjoint
lifetimes and can share same memory locations. The assignment
models discussed above are unable to exploit this.

3. THE FLOWOF THE ASSIGNMENT ALGORITHM

The idea of the mapping algorithm is to search for a pairwise
grouping of the arrays that is likely to yield the largest benefit in
terms of data storage reduction by mutual memory sharing. There-
fore, the elements of an array will be able to share the same storage
locations only between themselves, or with the elements of one
other array, but not to all the other arrays. This apparent limitation
entails only a reasonable increase in the hardware cost for address
generation (see the last paragraphs of the previous section), while
attempting to maximize the benefit of memory sharing between
distinct arrays. The flow of the algorithm is given below:
Step 1: For every array A in the algorithmic specification, com-
pute the size of the memory window MemA, based on DeGreef’s
mapping model [2], that is, analyzing the canonical linearizations
of the arrays and taking the smallest maximum distance between
simultaneously alive elements. The initial memory windows are
also evaluated using Tronçon’s mapping model [3] and the mini-
mum window provided by any of these two models is selected.

The implementation of this step uses the technique based on
disjoint linearly bounded lattices described in [6]. This technique
yields a much faster implementation than the original implemen-
tations of both mapping models [2] and [3].
Step 2: Build a complete graph G, where each vertex represents
an array in the application code. Compute weights for every edge
(A,B) in the following way:

(a) if the two arrays A and B have disjoint lifetimes, the weight
is min {size(MemA), size(MemB)};

1

2

3
913

14
18

8

7

12 10
171615

6

5

11

4

1710

26

39

41
40

41 42

6

3226

27

38 38

35
42

41

2213

12 10 3 11

21

36

42

41

Figure 3: The maximum weighted matching (bold edges).

(b) when the lifetimes of the two arrays overlap, compute the
maximum distance between the locations occupied by simultane-
ously alive A- and B-elements, taking into account the mapping
functions found at Step 1 and assuming the two memory win-
dows are contiguous; the size of the common window MemAB

is this maximum distance plus 1; the weight of the edge (A,B)
is size(MemA) + size(MemB) − size(MemAB). This weight
represents the data storage saved when the two arrays A and B

share the same memory space versus the situation when the two
arrays would be stored separately (in disjoint memory windows).
Step 3: Find the maximum weighted matching in the graph G.
A matching in graph is a set of edges, no two of which meet at
a common vertex. The weight of the matching is the sum of the
weights of its edges. A maximum weighted matching represents a
matching of maximum weight, as shown in Fig. 3 for a graph with
18 vertices. In our case, the graph is complete (there is an edge
between every pair of vertices) and the matching will produce the
most beneficial pairwise grouping of the arrays in terms of stor-
age reduction. The matching solution will maximize the overall
savings of data storage when the arrays are sharing pairwise the
memory space. Note that even larger savings could be achieved,
in principle, if more complex array groups shared the same mem-
ory space, but the computation effort would become prohibitive.

Maximum matching has been a subject of interest in graph the-
ory for the last 50 years. Algorithms were first developed for
matching on bipartite graphs. For non-bipartite graphs, most of
the best matching algorithms are based on theorems proved by
Berge in [9], who proposed searching for augmenting paths as a
general strategy for maximum matching. Based on Berge’s the-
orems, Edmonds proposed an efficient algorithm whose compu-
tation time is proportional to V 4, where V is the number of ver-
tices [10]. The algorithm works by finding augmenting paths by
a tree search combined with a process of shrinking certain sub-
graphs called blossoms into single nodes of a reduced graph (most
often Edmond’s algorithm is called the “blossom shrinking algo-
rithm”). The fastest existing algorithm under the assumption of in-
tegral costs that are not particularly high was developed by Gabow
and Tarjan [11]. Since the graphs built by this mapping algorithm
have, typically, less than 100 vertices (the vertices being the arrays

1411

Application # Array Memory Memory Memory
(# Arrays) elements size [3] size [2] size
Motion detection (4) 318,367 9,525 9,636 9,524
Regularity detect. (6) 4,752 4,353 3,879 2,817
Gauss. blur filter (7) 177,167 48,646 50,448 26,504
SVD updating (9) 386,472 17,554 16,754 10,360
Voice coder (54) 33,619 13,104 13,224 12,690

Table 1: Experimental results.

in the application code), an older algorithm of cubic complexity
due to Gabow [12] is sufficient for our benchmark tests, the com-
putation times for finding the maximum weighted matching being
under 1 second.
Step 4: Compute the overall data storage corresponding to the
maximum weighted matching in the graph. Take also into account
the possibility of disjoint lifetimes between entire arrays in this
matching (in which case, the common windows of the two pairs
can overlap). Determine the mapping functions for each array.

4. EXPERIMENTAL RESULTS

A software tool incorporating the algorithm described in this pa-
per, performing the mapping to the data memory of the multidi-
mensional arrays from a given algorithmic specification, has been
implemented in C++. For the syntax of the algorithmic specifica-
tions, we adopted a subset of the C language (see, e.g., the code
example in Fig. 1). Table 1 summarizes the results of our exper-
iments. The benchmarks used are: (1) a motion detection algo-
rithm used in the transmission of real-time video signals on data
networks, (2) a real-time regularity detection algorithm used in
robot vision, (3) a 2-D Gaussian blur filter from a medical image
processing application which extracts contours from tomograph
images in order to detect brain tumors, (4) a singular value de-
composition (SVD) updating algorithm used in spatial division
multiplex access (SDMA) modulation in mobile communication
receivers, in beamforming, and Kalman filtering; (5) the kernel
of a voice coding application, an essential component of a mo-
bile radio terminal. Table 1 shows some basic characteristics of
the benchmark codes: the numbers of arrays and the numbers of
scalars (array elements); the last three columns display the data
memory size after mapping obtained when employing the assign-
ment models [3], [2], and this algorithm (bold fonts), respectively.

These experiments show that the novel mapping approach, ex-
ploiting the possibility of memory sharing between arrays, pro-
duces better results in terms of data storage than two previous tech-
niques [2], [3] dealing with each array one by one. The amount of
storage reduction relative to other previous techniques depends on
the application, on how much the array lifetimes are overlapping
with one another. For instance, in the case of the motion detection
(for the set of parameters M = N = 64, m = n = 4), the results
of both previous techniques are very good. On the other hand, for
other benchmarks the reduction of data storage achieved by our
technique is very significant. E.g., for the 2-D Gaussian blur filter,

the storage reduction is over 46% when compared to both methods
[2] and [3]; for the SVD updating the reduction is about 40%.

The computation times were not displayed in Table 1 due to
lack of space: for the benchmarks in the table, the CPU times
when running our algorithm were between tens of seconds and 2
minutes on a PC with a 1.85 GHz Athlon XP processor. The com-
putation times for the mapping techniques [2] and [3] (with our
implementation [6], which is much faster than the original ones)
are lower; this is not unexpected since our algorithm uses those
techniques in Step 1. Evaluating the capability of memory shar-
ing between arrays consumes extra computation time, but this is a
price worth being paid when the storage reduction is significant.

5. CONCLUSIONS
This paper has addressed the problem of assigning the multidimen-
sional arrays from high-level algorithmic specifications of signal
processing applications to the physical memory. Different from
all the previous techniques that handle the arrays separately, this
novel approach exploits the possibility of inter-array memory shar-
ing, yielding significant savings of data storage.

References
[1] F. Catthoor, S. Wuytack, E. De Greef, F. Balasa, L. Nachtergaele,

and A. Vandecappelle, Custom Memory Management Methodol-
ogy: Exploration of Memory Organization for Embedded Multime-
dia System Design, Boston: Kluwer Academic Publishers, 1998.

[2] E. De Greef, F. Catthoor, and H. De Man, “Memory size reduction
through storage order optimization for embedded parallel multime-
dia applications”, special issue on “Parallel Processing and Multi-
media,” A. Krikelis (ed.), in Parallel Computing, Elsevier, vol. 23,
no. 12, pp. 1811-1837, Dec. 1997.

[3] R. Tronçon, M. Bruynooghe, G. Janssens, and F. Catthoor, “Stor-
age size reduction by in-place mapping of arrays,” in Verification,
Model Checking and Abstract Interpretation, A. Coresi (ed.), pp.
167-181, 2002.

[4] V. Lefebvre and P. Feautrier, “Automatic storage management for
parallel programs,” Parallel Computing, vol. 24, pp. 649-671, 1998.

[5] A. Darte, R. Schreiber, and G. Villard, “Lattice-based memory allo-
cation,” IEEE Trans. Computers, vol. 54, pp. 1242-1257, Oct. 2005.

[6] I.I. Luican, H. Zhu, and F. Balasa, “Signal-to-memory mapping anal-
ysis for multimedia signal processing,” Proc. Asia & South-Pacific
Design Automation Conf., Yokohama, Japan, 2007, pp. 486-491.

[7] P.G. Kjeldsberg, F. Catthoor, and E.J. Aas, “Data dependency size
estimation for use in memory optimization,” IEEE Trans. Comp.-
Aided Design of ICs and Syst., vol. 22, no. 7, pp. 908-921, 2003.

[8] F. Balasa, H. Zhu, and I.I. Luican, “Computation of storage require-
ments for multi-dimensional signal processing applications,” IEEE
Trans. on VLSI Systems, vol. 15, no. 4, pp. 447-460, April 2007.

[9] C. Berge, “Two theorems in graph theory,” in Proc. Nat. Acad. Sci-
ence USA, vol. 43, pp. 842-844, Sept. 1957.

[10] J. Edmonds, “Paths, trees, and flowers”, in Canadian J. of Mathe-
matics, vol. 17, pp. 449-467, 1965.

[11] H.N. Gabow and R.E. Tarjan, “Faster scaling algorithms for general
graph-matching problems,” J. of the ACM, vol. 38, no. 4, pp. 815-
853, 1991.

[12] H.N. Gabow, Implementation of Algorithms for Maximum Matching
on Non-Bipartite Graphs, Ph.D. Thesis, Stanford University, 1973.

1412

