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Abstract— In laptop and desktop computers, clocks and
busses generate significant radio frequency interference (RFI)
for the embedded wireless data transceivers. RFI is impulsive
in nature. When detecting a signal in additive impulsive noise,
Spaulding and Middleton showed a potential improvement in
detection of 25 dB at a bit error rate of 10−5 when using a
Bayesian detector instead of a standard correlation receiver. In
this paper, we model impulsive noise using Middleton Class A
and Symmetric Alpha Stable (SαS) models. The contributions
of this paper are to evaluate (1) the performance vs. complexity
of parameter estimation algorithms, (2) the closeness of fit of
parameter estimation algorithms to measured RFI data from
the computer platform, (3) the communication performance vs.
computational complexity tradeoffs for the correlation receiver,
Wiener filter, and Bayesian detector, and (4) the performance
of myriad filtering in combating RFI interference modeled as
SαS interference.

Index Terms— Alpha Stable, RFI Mitigation, Computational
Platform, Impulsive Noise, Middleton Noise

I. INTRODUCTION

We address the reduction of RFI experienced by the wire-

less data communication transceivers deployed in a computa-

tion platform. Table I lists several wireless data communica-

tion standards and the computing platform subsystems (esp.

clocks and busses) that have common spectral occupancy.

The interference with wireless transceivers is not only due

to the near-field coupling with radiation at frequencies of

the driving clocks but also due to the harmonics produced

by these subsystems.

RFI is a combination of independent radiation events, and

predominantly has non-Gaussian statistics. Models used for

RFI modeling include Middleton’s Class A, B and C noise

models (statistical-physical) [1] and Symmetric Alpha-Stable

models (statistical) [2]. They are well-suited for modeling

the predominantly non-Gaussian random processes that arise

from the nonlinear phenomena that govern electromagnetic

interference. Symmetric Alpha-Stable processes are included

due to their mathematically tractable form for parameter

estimators and communication detectors [3].

In this paper, we restrict our attention to combating Class

A and SαS noise. We evaluate the detection performance

of a correlation receiver, a Wiener filter, Bayes hypothesis

testing [4], and a myriad filter [2].

Section II gives a brief introduction to Middleton noise

models and Symmetric Alpha-Stable models. Section III

describes different parameter estimation algorithms for
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TABLE I: Example of computer subsystems interfering with
wireless standards [5], [6], [7]

Standard Wireless
Networking

Interfering Clocks
and Busses

Bluetooth Personal Area Net-
work

Gigabit Ethernet,PCI
Express Bus, LCD
clock harmonics

IEEE
802.11b/g

Wireless LAN (Wi-
Fi)

Gigabit Ethernet, PCI
Express Bus, LCD
clock harmonics

IEEE 802.11n High-Speed Wireless
LAN

Gigabit Ethernet, PCI
Express Bus, LCD
clock harmonics

IEEE 802.16e Mobile Broadband
(Wi-Max)

PCI Express Bus, LCD
clock harmonics

IEEE 802.11a Wireless LAN (Wi-
Fi)

PCI Express Bus, LCD
clock harmonics

these models, and their communication performance vs.

computational complexity tradeoffs. Section IV quanti-

fies the performance of the above methods applied to

measured data provided by Intel. Last, Section V de-

scribes some RFI combating techniques for Class A and

SαS noise, and provides a performance vs. complex-

ity analysis of these algorithms. In this paper, “noise”

and “interference” are used interchangeably as represent-

ing unwanted signals. We developed a MATLAB toolbox

(www.ece.utexas.edu/∼bevans/projects/rfi/software) that con-

tains implementations of the algorithms mentioned in this

paper and can be used to reproduce the obtained results.

II. RFI NOISE MODELING

Statistical-physical models provide accurate universal

models for Electro-Magnetic Interference (EMI) from natural

and human-made sources.

A. Middleton Class A Model

Middleton Class A noise model represents narrowband

noise, i.e. when the interference spectrum is narrower than

the receiver bandwidth. The Class A model is uniquely

determined by two parameters [1]:

• AA (the overlap index), the product of the average

number of emissions events impinging on the receiver

per second and mean duration of a typical interfering

source emission, e.g. AA ∈ [10−2,1] in [3].

• ΓA is the ratio [σ2
G/Ω2A], where σ2

G is the intensity of

the independent Gaussian component, Ω2A is intensity

of the impulsive non-Gaussian component, e.g. ΓA ∈
[10−6,1] in [3].
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Envelope statistics for the Middleton class A model [1]

are ω(ε) = 2e−AA
∞
∑

m=0

Am
A εe−ε2/2σ2

m

m!σ2
m

where σ2
m =

m
AA

+ΓA

1+ΓA
.

B. Symmetric Alpha Stable (SαS) Model

The practical applications of Class A and Class B models

are limited due to the intractable form of their distributions

[1]. Many authors have considered Symmetric Alpha Stable

(SαS) models as an approximation to Middleton models

[8], particulary in narrowband reception without a Gaussian

component. In Section IV, we show that the Symmetric

Alpha Stable (SαS) model serves as a good approximation

for the physical phenomena underlying RFI. A random

variable is said to have a SαS distribution if its characteristic

function is of the form Φ(ω) = e jδω−γ|ω|α where

• α , the characteristic exponent, measures the “thickness”

of the tail of the distribution, where α ∈ [0,2]
• δ , the localization parameter, is the mean when 1≤α ≤

2 and the median when 0 ≤ α ≤ 1

• γ , the scale parameter or the dispersion, is similar to the

variance of the Gaussian distribution, where γ > 0

III. PARAMETER ESTIMATION

In this section, we discuss various parameter estimation

algorithms for both Class A and Symmetric Alpha Stable

(SαS) noise models.

A. Middleton Class A Model Parameter Estimation

An efficient parameter estimation method for Class A

model has been developed by Zabin and Poor based on the

Expectation Maximization (EM) algorithm [3], [10]. They

express the envelope probability density as a sum of weighted

probability densities, under the constraint that the sum of the

weights is equal to one. Let Θ= (AA,K), where K = AAΓA,

denote the parameter set that has to be estimated.

The two steps, the expectation step (E-Step) and the

maximization step (M-Step), of the expectation maximization

algorithm given in [10] are hence given as follows:

• E-Step: Evaluate Q(Θ|Θ(p)) , the expected value of the

log-likelihood function

• M-Step: Determine Θ=Θ(p+1) to maximize Q(Θ|Θ(p))
Zabin and Poor give a closed form of the log-likelihood

function Q(Θ|Θ(p)) [3]. The maximization step is then

developed as a two-step iterative procedure [3], where we

first maximize over AA assuming that K is known and then

vice-versa. The first minimization can be expressed as a

polynomial of order 2 in AA and the second minimization

can be expressed as a polynomial of order 4 in K (after

the linearizing approximation ). The two-step Maximization

step can therefore be solved efficiently as it reduces to finding

roots to polynomial equations of orders 2 and 4, respectively.

The performance of the EM Estimator developed by Zabin

and Poor for Class A model has been shown in Fig. 1 for

the estimation of parameter AA. The number of iterations

taken by the EM estimator to converge is proportional to

A and K. The number of iterations was observed to vary

between 2 and 30 iterations to converge to a relative error

1e 006 1e 005 0.0001 0.001 0.01

1

1.5

2

2.5

3

3.5

x 10 3

K

Fr
ac

tio
na

l M
S

E
 =

 | 
(A

 
 A

es
t) /

 A
 |2

Fractional MSE of Estimator for A

A = 0.01
A = 0.1
A = 1

Fig. 1: Fractional MSE in estimates of parameter AA using EM
algorithm [3] for Class A model

in successive estimates to be less than 10−7 in the range

of interest. The estimates were calculated using N = 1000

envelope data samples which were generated synthetically

based on the envelope distribution. Note that the envelope

probability density function (pdf) is expressed as an infinite

sum and only the first 11 terms were used in simulations.

The results were averaged over 50 Monte-Carlo simulation

runs.

B. Symmetric Alpha Stable (SαS) Parameter Estimation

An efficient, computationally fast estimator was developed

by Tsihrintzis and Nikias [8]. It is based on the asymptotic

behavior of extreme-order statistics, and is described next.

Let X1,X2, . . . ,XN be a collection of independent realiza-

tions of a random variable with the pdf f and cumulative

density function (cdf) F . Let XM and Xm be the maximum

and the minimum in the given sequence, respectively. Statis-

tics of XM and Xm are referred to as extreme-order statistics

of the collection. For the alpha-stable model, it can be shown,

using the theorem for Feasible Asymptotic Distribution for

Extreme-Order Statistics, that the density of maxima and

minima ( fM and fm ) approach the Frechet distributions

as N →∞ [8]. Hence the estimators for the three parameters

of the alpha-stable models are given by [8] as follows:

• Localization Parameter (δ ) estimator is given by δ̂ =
median(X1,X2, ...,XN)

• Characteristic Exponent (α) divides the data into L

non-overlapping segments of equal length, computes

the standard deviations of the natural logarithm of

maximum ( = s ) and minimum (= s) of the data

segments, and estimates α̂ = π
2
√

6

(
1
s + 1

s

)
.

• Dispersion (γ) estimator is given by γ̂ =⎡
⎣

1
N

N
∑

k=1
|Xk−δ̂ |

p
α̂

C(p,α̂)

⎤
⎦

α̂
p

where C(p, α̂) = 1
cos( π2 p)

Γ(1− p
α̂ )

Γ(1−p)

and p is an arbitrary choice for the order (0 ≤ p ≤ α̂)

of fractional moment.

The performance of the extreme-order statistics method

[10] was observed when setting γ = 5 (dispersion parameter)
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Fig. 2: MSE in the estimates of the Characteristic Exponent for
N = 10000 synthetic data samples, true parameters δ =
10 (localization), γ = 5 (dispersion), L = 1250, p = α/3.

and δ = 10 (localization parameter) and by varying α
(characteristic exponent) over its entire range (0 ≤ α ≤ 2).

Estimates were calculated using N = 10000 data samples

generated synthetically based on the characteristic function

of symmetric alpha stable model. The data was segmented

into L = 1250 sets for the estimator for the characteristic

exponent α . Fractional lower-order moments of 1/3 were

used in the estimator for the dispersion parameter by choos-

ing p = α̂/3. The mean square error in the estimates for the

characteristic exponent (α) is given in Fig. 2. The results

were averaged over 100 Monte-Carlo simulation runs.

IV. MEASURED DATA FITTING

Measurements of radio frequency interference (RFI) on

a computation platform were obtained from Intel Corpo-

ration. Measurement data was collected using a 20GSPS

scope which represented actual radiated data. Four sets of

measurement data were recorded in different configuration

of the computation platform (i.e. different subsystems active

etc). Each set of measurements contained 80000 samples

of data. The noise was assumed to be ”broadband”, i.e.

noise bandwidth was greater than the receiver bandwidth,

and the radio was used to listen to the platform noise only

(no data communication was being carried out). No further

information was provided. We observed that the pdf of the

measurements was symmetric. Hence the symmetric alpha

stable model was chosen to model that measurement’s pdf.

The method of extreme order statistics yields a very good fit

for the empirical data as can be seen from Fig. 3.

V. FILTERING AND DETECTION

In this section, we evaluate the detection performance

of the correlation receiver, the Wiener filter, the Bayes

hypothesis testing, and the myriad filtering.

A. Wiener Filtering

The Wiener filter is the optimal linear filter in terms of

minimizing the mean-squared error, and an finite impulse
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Fig. 3: PDF of measured data compared with the PDF of an
estimated symmetric alpha stable model with α = 1.5525,
γ = 0.5833, and δ = -0.0393.

response Wiener filter is designed using the famous Wiener-

Hopf equations. It assumes that the corrupting noise and

desired signals are wide sense stationary.

B. Coherent Bayes Detection

Bayes detection is performed by choosing the hypothesis

(bit) that maximizes the probability of receiving a signal

given the sent hypothesis. Using Class A pdf, Spaulding and

Middleton derived the optimal decision rule and its small

signal approximation for coherent Class A detection [4].

The Bayes approach to detection is based on hypothesis

testing. Spaulding and Middleton considered the case of

digital binary signaling (two hypothesis H1 and H2) [4].

Using an additive noise model , the optimal Bayesian detec-

tion rule for a binary hypothesis case is given by: Λ(X) =
p(H2)p(X |H2)
p(H1)p(X |H1)

<H1

≥H2

1 where X is the received signal, and p(.)

is obtained from Class A pdf.

By taking the Taylor series expansion of the Class A pdf

and retaining the first-order terms of the gradient, Spaulding

and Middleton were able to obtain a simplified expression

for the detection rule, given below:

x∗ =∇X ln pZ(X) ·	S =
N

∑
i=1

(s1i−s2i)
d

dxi
ln pZ(xi) ≶H1

H2
0 (1)

This formula has a form similar to the standard correlation

receiver for Gaussian noise with the exception of the non-

linearity d
dxi

ln pZ(xi) that precedes it.

C. Myriad Filtering

Myriad filters provide a filtering framework with high sta-

tistical efficiency in bell-shaped impulsive distributions like

the SαS distribution. Gonzalez and Arce [2] have shown that

myriad filters present important optimality properties along

the α-stable family. The myriad filter is a sliding window

algorithm, that outputs the myriad of the sample window.

The myriad of order k of a set of samples x1,x2, . . . ,xN is

defined as β̂k = argminβ ∑N
i=1 log[k2 +(xi −β )2]. The choice

for k can be determined by the following empirical formula
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Fig. 4: Communication performance for Middleton Class A in-
terference with AA = 0.35 and Γ= 0.5×10−3.

k(α) =
√

α
2−α γ

1
α where α and γ are the parameters of the

SαS noise [2].

D. Performance Comparison

Fig. 4 provides simulation results for a raised cosine

pulse (10 samples per symbol period, 10 symbols period

per symbol) sent through a memoryless channel (hence no

intersymbol interference) and corrupted by Middleton Class

A interference (with AA = 0.35 and Γ = 0.5× 10−3). The

Wiener filter does not offer much improvement over the

correlation receiver since it is suboptimal in non-Gaussian

noise. The improvement in communication performance by

using the Bayes detection rule is approximately 25 dB for

a bit error rate of 10−3, and 20 dB for the small signal

approximation. On the other hand, Fig. 5 compares the

communication performance in the presence of additive SαS

noise (with parameters α = 0.5, γ = 1 and δ = 0). Since the

second order moment of alpha stable processes do not exist,

we compare the bit error rate (BER) against the generalized

SNR, defined as GSNR = 10log Es
γ , where Es denotes the

signal power and γ is the dispersion parameter of SαS

process. The myriad filtering is preceded by the parameter

estimation for SαS and followed by the correlation receiver.

A gain of 5dB is observed at a BER of 10−1.

E. Complexity vs. Performance Comparison

The complexity of the Bayesian detection is Θ(NMKU)
operations to perform detection, due to the complex pdf

function for Class A noise, where N is the number of samples

per symbol, M is the number of terms we retain from the

infinite series, U is the cardinality of the signaling space

and K is the number of operations required to compute a

transcendental function (an exponential in this case). The

Wiener filer on the other hand requires Θ(NT ) operations to

compute its output, where T is the number of taps of the

Wiener filter. The correlation receiver in the given setting

only requires Θ(N) operations. Taking these complexities

and the results of Section V-D, it is noticed that additional
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Fig. 5: Communication performance for SαS additive noise with
α = 1.5, γ = 1, and δ = 0.

TABLE II: Complexity vs. performance comparison.

Method Computational Complexity Detection Performance
Bayesian Θ(NMKU) High

Correlation Θ(N) Low
Wiener Θ(NT ) Low

gain comes at the cost of higher complexity. The results are

summarized in Table II.
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