
AUTOMATIC SYNTHESIS OF VLSI ARCHITECTURES FOR ARBITRARY LIFTING-BASED
FILTER BANKS AND TRANSFORMS

Ruben Bartholomä, Thomas Greiner, Frank Kesel

Pforzheim University
Dept. Engineering and Information Technology

75175 Pforzheim, Germany
E-mail: {ruben.bartholomae, thomas.greiner,

frank.kesel}@hs-pforzheim.de

Wolfgang Rosenstiel

University of Tübingen
Dept. of Computer Engineering
72076 Tübingen, Germany

E-mail: rosenstiel@informatik.uni-
tuebingen.de

ABSTRACT
Recently, the conventional lifting scheme that is widely used for the
construction of Wavelets and 2-channel filter banks has been ex-
tended to M-channel filter banks (M > 2). This extension brings
up the beneficial properties of the lifting scheme to a broader range
of applications, like discrete cosine transforms. There exist many
hand-crafted lifting-based VLSI architectures, which mostly concen-
trate on a single and specific target application having a fixed data
throughput and resource consumption. However, the reusability of
such architectures is limited due to the lack of scalability and flexi-
bility. To overcome this issue, we present a novel design methodol-
ogy for automatic synthesis of VLSI architectures that are suitable
for arbitrary lifting-based M-channel filter banks and transforms.
The methodology offers wide-ranging design space exploration with
varying resource consumption and data throughput tradeoffs, as it is
desired in modern System-on-Chip design.

Index Terms— Design methodology, Very-large-scale integra-
tion, Lifting scheme, Wavelet transforms, Discrete cosine transforms

1. INTRODUCTION

The lifting scheme provides excellent features, namely perfect re-
construction, reduction of computational complexity and in-place
computation [1]. It is widely used for the realization of the dis-
crete wavelet transform (DWT). The classical lifting scheme deals
with the factorization of a 2-channel filter bank into a product of
so-called lifting steps. Recently, a generalization of the 2-channel
lifting scheme to the M-channel lifting scheme (M > 2) has been
proposed [2]. This extension brings up the features of the lifting
scheme to applications that rely on an M-channel filter bank, like the
discrete cosine transform (DCT), which is widely used in image and
video coding applications.

Another example for a lifting-based M-channel transform is the
binDCT [3]. The concept of the binDCT is the design of multiplier-
less approximations of DCTs with the lifting scheme. The result is
an approximated DCT that provides the desired features of the lift-
ing scheme and the DCT as well as low-cost implementations, since
there are only multiplications with dyadic coefficients necessary.

Modern System-on-Chip (SoC) designs demand for parameter-
izable, reusable Intellectual Property (IP) cores that can be easily
integrated into system specifications. However, hand-crafted archi-
tectures mostly concentrate on a single and specific target application
having a fixed data throughput and resource consumption. For ex-
ample, the works of [4] and [5] focus on lifting-based architectures

for DWT filter banks. In [6] two architectures for calculating DCT
approximations with binDCT were presented.

In this contribution, we present a novel design methodology to
automatically synthesize VLSI architectures with different area and
throughput tradeoffs using a single specification of a lifting-based fil-
ter bank. Hence, our methodology is applicable during design space
exploration to choose the most efficient architecture for a specific
application. The proposed design methodology is implemented as a
high-level compilation tool that generates synthesizable VHDL code
at the register transfer level (RTL).

The rest of this paper is organized as follows. In section 2 a brief
introduction into the M-channel lifting factorization is given. Sec-
tion 3 explains our design methodology and in section 4 we discuss
some design issues of the generated hardware architectures. Sec-
tion 5 presents some experimental results and in section 6 we finally
conclude the paper.

2. M-CHANNEL LIFTING FACTORIZATION

Starting point for the M-channel lifting scheme is the polyphase rep-
resentation of the underlying filter bank. This representation is clas-
sified by an M × M polyphase matrix as shown in the following
equation:

H(z)=

⎛
⎜⎜⎜⎝

H0,0(z) H0,1(z) · · · H0,M−1(z)
H1,0(z) H1,1(z) · · · H1,M−1(z)
...

...
. . .

...
HM−1,0(z) HM−1,1(z) · · · HM−1,M−1(z)

⎞
⎟⎟⎟⎠ . (1)

The signal flow graph (SFG) for the direct implementation of the
polyphase filter bank is shown in Fig. 1. The signals Xi(z) and
Yi(z) are the polyphase components of the input and output signals.
The filtersHi,j(z) are FIR filters with an arbitrary number of coeffi-
cients. The idea of the M-channel lifting scheme is to factorize the
polyphase matrix H(z) into a product of special triangular matri-
ces, which are referred to as M-channel lifting steps. An M-channel
lifting step from channel j to i is defined by the following matrix
operator:

Γi,j [λ(z)] = I+ λ(z) · ei · e
T
j , (2)

where I is the M ×M identity matrix, ei denotes the i-th M × 1
unit vector with i, j ∈ {0, 1, · · ·M−1} and i �= j. λ(z) denotes the
corresponding FIR lifting polynomial. The SFG for the lifting step
Γi,j [λ(z)] is shown in Fig. 2(a). The complete SFG for a fully lifting
factorized polyphase matrix can be obtained easily by cascading the

14011-4244-1484-9/08/$25.00 ©2008 IEEE ICASSP 2008

H (z)i, j...
+

+

. . .
H (z)i, j...

+

+

H (z)i, j...
+

+

...

X (z)0

X (z)1

X (z)M-1 Y (z)0

Y (z)1

Y (z)M-1

)(0,0 zH

)(1,0 zH

)(1,0 zH
M �

)(0,1 zH

)(1,1 zH

)(1,1 zH
M �

)(0,1 zH
M �

)(1,1 zH
M �

)(1,1 zH
MM ��

Fig. 1. SFG of a polyphase matrixH(z)

Ch. i

Ch. j

Ch. M-1

Ch. 0

ë(z)

(a)

...

+

...

...

(b)

Ch. M-1

Ch. 0

...

...
k

zc
��

Ch. 1

Ch. M-2

Ch. i

Fig. 2. (a) SFG of a lifting step Γi,j [λ(z)] and (b) SFG of a diagonal
stepΔi[c · z

−k]

SFGs of each lifting step with appropriate values for the parameters
i, j and λ(z). In [2] it is shown that a polyphase matrix H(z) with
det(H(z)) = z−k, k ∈ Z can be factorized into a product of lifting
steps. To obtain additional flexibility during the process of factoring
and designing filter banks an extension of the strict lifting factoriza-
tion is proposed in [2]. This extension allows the decomposition of
a matrix H(z) into a product of lifting steps and so-called diagonal
steps. A diagonal step is defined by the matrix operator:

Δi[c · z
−k] = I+ (c · z−k − 1) · ei · e

T
i , (3)

where k ∈ Z, i ∈ {0, 1, · · ·M − 1} and c is a single dyadic coeffi-
cient of the form±2−n with n ∈ Z. The corresponding SFG can be
obtained from Fig. 2(b). Equation (4) denotes the decomposition of
a matrixH(z) into a product of NL lifting steps and diagonal steps,
respectively.

H(z) = LNL
(z) · LNL−1(z) · . . . · Lm(z) · . . . · L1(z),

with Lm(z) =

{
Γi,j [λ(z)] for lifiting step
Δi[c · z

−k] for diagonal step (4)

The factorization of (4) provides the basis for the hardware syn-
thesis. It will be referred to as lifting specification in the following
sections.

3. DESIGN METHODOLOGY

In Fig. 3 we present a block diagram of the design flow that is used
for the automatic architectural synthesis. The input of this flow is

LP Instruction Generation

LP Instruction Mapping

Variable Mapping

RTL Code Generation

Specific Lifting Factorization

RTL netlist of
Lifting Processor

Lifting Specification

Synthesis Constraints

*Data Throughput

*...

*Arithmetic Constraints
*Multiplier Implementation

.vhd

Fig. 3. Block diagram of the design flow

a lifting specification according to (4) as well as several synthesis
constraints. The result is a RTL netlist of a so-called Lifting Proces-
sor (LP) architecture that calculates the operations of the filter bank,
respecting to the synthesis constraints. The synthesis constraints ba-
sically enable the customization of the following aspects: desired
data throughput, multiplier-based or multiplierless implementation
and arithmetic precision of coefficients and data path.

The concept of our approach is to map a given lifting specifi-
cation to a set of elementary operations, which allow to apply easily
both parallel and pipeline techniques. The elementary operations are
so-called LP instructions that are realized on an adequate LP archi-
tecture. In order to capture all the common properties of different
lifting specifications we define that each LP instruction processes
a lifting step or a diagonal step with exactly one polynomial coef-
ficient. Hence, the first step in the design flow is to obtain an ar-
chitecture specific lifting factorization. This factorization rewrites
(4) and decomposes any lifting step Γi,j [λ(z)] with more than one
polynomial coefficient into a product of lifting steps with only one
coefficient using

Γi,j [λ(z)] =
∏
k

ck �=0

Γi,j [ck · z
−k] , with

λ(z) =
∑

k
ck �=0

ck · z
−k. (5)

The result of this decomposition procedure again is a lifting specifi-
cation according to (4) but the number NL increased by the number
of nonzero coefficients ck minus one.

Depending on the precision of the polynomial coefficients, mul-
tiplierless architectures may lead to more resource efficient realiza-
tions compared to architectures that use parallel multiplier logic.
Multiplierless architectures are restricted to multiplications with dya-
dic coefficients, which can be implemented efficiently by a single
right or left shift of the multiplicands. Consequently, for the synthe-
sis of multiplierless architectures we also have to restrict that each
LP instruction processes a lifting step or a diagonal step with exactly
one dyadic polynomial coefficient. Therefore, after applying (5) to
the lifting specification (4) we further have to decompose each lift-
ing step with a non-dyadic coefficient into a product of appropriate
lifting steps with dyadic coefficients. Equation (6) points out this
decomposition.

Γi,j [ck · z
−k] =

Nc∏
l=1

Γi,j [ck,l · z
−k], with

ck · z
−k =

Nc∑
l=1

ck,l · z
−k and ck,l = ±2−n (6)

1402

Table 1. LP instruction types
Instruction Arithmetic Data Shift
Type Operation Operation
mac B ← B + A ∗ C NO
mul B ← A ∗ C NO
macsft B ← B + A ∗ C YES
mulsft B ← A ∗ C YES

PU0 PUN
...

LPE0

...

PU0 PUN
...

LPE1

...

PU0 PUN
...

LPEN-1

......

register bank register bank register bank

0 1 2

Fig. 4. Lifting Processor architecture consisting of LPEs and PUs

Again, the result of this decomposition procedure is a lifting specifi-
cation according to (4), whereas the numberNL increased byNC−1.

The next step in the design flow considers the generation of an
LP instruction list by iterating the decomposed lifting specification
(4) in increasing order. Each element Lm(z) of (4) is translated
into an LP instruction of a specific type. Table 1 summarizes the
different types of LP instructions. If Lm(z) is a lifting step it is
translated into an LP instruction of type mac. Otherwise, if Lm(z)
is a diagonal step an LP instructions of type mul is generated. These
two LP instruction types perform pure arithmetic operations using
the operands A, B and C. The operands A and B are variables
that hold information about the referred channels of the associated
lifting step or diagonal step. The operand C is the only polynomial
coefficient of Lm(z). Depending on the multiplier implementation
constraint, C is either a rational or a dyadic coefficient.

During the process of LP instruction mapping the actual struc-
ture of the resulting LP architecture is determined and all the re-
quired arithmetic resources are allocated. Fig. 4 presents the struc-
ture of a synthesized LP architecture. The architecture embeds a one
dimensional array of so-called Lifting Processing Elements (LPEs),
where each LPE is receiving partial results from its predecessor. This
array can be considered as a coarse-grained pipeline, whereas each
LPE represents a pipeline stage. An LPE consists of a register bank
and one or more Processing Units (PUs). Each PU has the capability
to process an LP instruction within a single clock cycle. This kind
of structure enables to apply both parallel and pipelining techniques
for controlling the data throughput of the architecture. Parallel pro-
cessing is achieved by mapping concurrent LP instructions to dif-
ferent PUs within a LPE and pipelining is applied by mapping LP
instructions to different pipeline stages (different LPEs). With con-
sideration of the data dependencies between the LP instructions and
the synthesis constraints for data throughput, the LP instructions are
scheduled and bound to the allocated PUs. We have applied a list
scheduling algorithm to schedule the LP instructions of each LPE.

After scheduling and binding of the LP instructions the variables
A and B of LP instructions are mapped to the data registers of an
LPE’s register bank. The data registers are organized as shift reg-
isters to realize the delay elements z−k resulting from decomposed
lifting steps or diagonal steps, respectively. To determine the clock
cycle of a shift register’s shift action, some of the LP instructions are

...

2

«1
...

C

'0'

...

...

A
variables

B
variables

decoder for
write enable

signals

control
signals

x

���

sub

�
+

LP instruction
ROM

«

Fig. 5. Schematic diagram of a PU

modified to the types macsft and mulsft. These types are extended
versions of mac and mul that initiate a shift action in parallel to the
arithmetic operation. A detailed explanation is given in [7].

The final step in the design flow of Fig. 3 affects the VHDL RTL
code generation for the target LP architecture.

4. PROCESSING UNIT DESIGN

Since the PU is the most important design module we want to inspect
some design issues of this module. Fig. 5 outlines the schematic
diagram of a PU. To process all its mapped LP instructions, each
PU embeds a control unit that controls the data path elements, like
multiplexers, registers or arithmetic units, as well as write enable
signals that are connected to the register bank of the associated LPE.
The control unit is realized as a sequencer, whereas the information
of each LP instruction is stored as an instruction word in the LP
instruction ROM.

The data path of a PU contains two multiplexers for selecting
the data associated with the variables A and B of the corresponding
LP instructions. A PU either implements a multiplier resource or an
appropriate operand shifting circuit for the realization of the product
A · C, depending on the synthesis constraint for multiplier imple-
mentation. Fig. 5 outlines the two different implementation styles
by the dashed boxes. In the case of a multiplier implementation a
coefficient C is embedded into the instruction word of the associ-
ated LP instruction. If a multiplierless implementation is requested,
the multiplications with the dyadic coefficients are realized by hard-
wired arithmetic shifting of the operands A. Consequently, each in-
struction word of an LP instruction embeds a multiplexer address to
select the desired product A · C.

5. EXPERIMENTAL RESULTS

We implemented the design flow of figure 3 as a high-level com-
pilation tool that generates VHDL RTL code. This code can be
processed by any RTL-based design flow. In order to prove the effi-
ciency of the proposed design methodology, we present results about
design space explorations of lifting-based DWT and DCT architec-
tures, which were generated by our tool.

Equation (7) points out a lifting factorization of the popular 9/7
filter for the DWT.

H(z)=Γ0,1[α · (1 + z−1)] · Γ1,0[β · (z + 1)]

·Γ0,1[γ · (1 + z−1)] · Γ1,0[δ · (z + 1)] · diag(ζ, 1/ζ) (7)

1403

Table 2. Comparison of different 9/7 DWT architectures
Architecture #Mult. #Add. #Reg. Throughput

(samples/cycles)
Proposed W1 8 8 21 2/1
Proposed W2 4 4 13 1/1
Proposed W3 2 2 9 1/2
Proposed W4 1 1 7 1/4
[5] direct 4 8 4 2/1
[5] pipelined 4 8 26 2/1

+

+

-1 1/2

+

+

-1 1/2

+

+

-1 1/2

+

+

-1 1/2

+

+

-1 1/2

+

+

-1 1/2

+

+

-1/2

+

+

-p1 u1

+

+

-p4 u4

+

-p5

+

+

-1/2

+

+

-1 1/2

+

+

+

+

-p3 u3 -p2 u2

X0

X1

X2

X3

X4

X5

X6

X7

Y0

Y4

Y6

Y2

Y7

Y3

Y5

Y1

2

)4/sin(�

)4/sin(- �

2

)8/sin(3�

2

)16/sin(7�

2

)16/cos(3�
�

)16/(72s

1

�in
�

)16/2cos(3

1

�

)8/sin(32

1

�
�

Fig. 6. Structure of a lifting factorized 8-point binDCT

The corresponding floating point coefficients can be obtained from
[5]. According to [5], we also ignore the scaling coefficients in the
diagonal matrix diag(ζ, 1/ζ), resulting in a lifting specification ac-
cording to (4). Using this lifting specification we generated four
different multiplier-based architectures by varying the synthesis con-
straints for data throughput. The architectures are summarized in Ta-
ble 2. They are ranging from slow low-cost architectures, with a sin-
gle multiplier and adder resource, to high-speed architectures. The
resource consumption is measured in terms of required multiplier,
adder and register resources. The critical paths of our architectures
are mainly dominated by the delay of a single multiplier and a single
adder, which equals the pipelined variant of [5]. As the compari-
son with [5] shows, in the case of the DWT our architectures require
more resources for the high-speed architectures. However, we are
able to generate resource efficient low-cost architectures, which are
sufficient for many applications that do not require highest speed.

As already mentioned in section 1, the concept of the binDCT
is to approximate multiplierless DCTs with the lifting scheme. In
Fig. 6 we present a SFG of a lifting factorized 8-point binDCT. This
SFG is a slightly modified variant of the fully lifting factorized SFG
from [3] that fulfills the definition according to (4). For our experi-
ments, we defined a lifting specification using the following approx-
imated coefficients for the lifting steps of Fig. 6:

p1 = 3/8 p2 = 5/8 p3 = 1/8 p4 = 3/8
u1 = 1/4 u2 = 1/2 u3 = 1/8 u4 = 5/8 p5 = 3/8.
According to the proposals of [3], we ignore the scaling coefficients
in the dashed boxes. To perform a design space exploration, we gen-
erated five different multiplierless architectures by simply varying
the synthesis constraints for data throughput. Table 3 summarizes
the results. Again, we are able to generate adequate architectures
for different throughput requirements. Comparing our architecture

Table 3. Comparison of different DCT architectures
Architecture #Add. #Reg. Throughput

(samples/cycles)
Proposed C1 17 56 4/1
Proposed C2 8 32 2/1
Proposed C3 4 16 1/1
Proposed C4 2 8 1/2
Proposed C5 1 8 1/4
[6] slow 5 40 1/1
[6] fast 20 40 4/1

C3 with the slow architecture of [6] shows that both architectures
have the same throughput and our architecture even requires less re-
sources. The fast architecture of [6] and our architecture C1 both
have same throughput and similar resource consumptions. The crit-
ical paths of all the inspected architectures of Table 3 are mainly
dominated by a single adder. Our proposed coefficients for DCT
approximation reflect slightly better performance measures (smaller
mean square error and higher coding gain) compared to [6].

6. CONCLUSION

We presented a novel design methodology for automatic architec-
tural synthesis of arbitrary lifting-based M-channel filter banks and
transforms. The methodology is suitable for design space explo-
ration to find adequate architectures for different applications. As
our experiments show, the methodology produces satisfactory re-
sults. Our generated DCT architectures are comparable to hand-
crafted designs.

7. REFERENCES

[1] I. Daubechies and W. Sweldens, “Factoring wavelet transforms
into lifting steps,” J. Fourier Anal. Appl., vol. 4, pp. 245–267,
1998.

[2] Y.-J. Chen and K. Amaratunga, “M-Channel Lifting Factoriza-
tion of Perfect Reconstruction Filter Banks and Reversible M-
Band Wavelet Transforms,” IEEE Trans. Circuits Syst. II, Ana-
log Digit. Signal Process., vol. 50, pp. 963–976, 2003.

[3] J. Liang and T.D. Tran, “Fast Multiplierless Approximations of
the DCT With the Lifting Scheme,” IEEE Trans. Signal Pro-
cess., vol. 49, pp. 141–144, 2001.

[4] B.-F. Wu and C.-F. Lin, “A High-Performance and Memory-
Efficient Pipeline Architecture for the 5/3 and 9/7 Discrete
Wavelet Transform,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 15, pp. 1615–1628, 2005.

[5] C.-T. Huang, P.-C. Tseng, and L.-G. Chen, “Efficient VLSI
Architectures of Lifting-Based Discrete Wavelet Transform by
Systematic Design Method,” Proc. IEEE Int. Symp. Circuits
Syst., vol. 5, pp. 565–568, 2002.

[6] P.P. Dang, P.M. Chau, T.Q. Nguyen, and T.D. Tran, “BinDCT
and Its Efficient VLSI Architecture for Real-Time Embedded
Applications,” J. of Imaging Science and Technol., vol. 49, pp.
124–137, 2005.

[7] R. Bartholomä, T. Greiner, F. Kesel, and W. Rosenstiel, “A
Systematic Approach for Synthesizing VLSI Architectures of
Lifting-Based Filter Banks and Transforms,” IEEE Trans. Cir-
cuits Syst. I, Reg. Papers, Accepted for future publication.

1404

