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ABSTRACT
Compressed Sensing (CS) has been recently proposed for more ef-

ficient signal compression and recovery at theoretical level. This

paper proposes a new image/video coding approach combining the

CS theory into the traditional discrete cosine transform (DCT) based

coding method to achieve better compression efficiency for spatially

sparse signal. Furthermore, this new approach is integrated into

JPEG and H.264/AVC coding framework as a new coding mode.

Rate-distortion optimization is employed for adaptive selection be-

tween the new coding mode and the conventional coding modes. Ex-

perimental results demonstrated remarkable coding gain for different

kinds of natural image/videos by the proposed method.

Index Terms— compressed sensing, discrete cosine transform,

rate-distortion optimization, image/video coding

1. INTRODUCTION

Compressed sensing (CS) theory [1] is a newly proposed approach

used in signal processing. By employing linear programming or

other mathematical programming methods, it is able to recover orig-

inally spatially sparse signal from its incomplete frequency coeffi-

cients. Since a large quantity of image and video frames fit this

criterion, increasing amount of research work has been done to in-

corporate the CS theory into this field.

Existing image/video coding technologies can be classified into

two categories based on different transform types: wavelet based im-

age/video compression and Discrete Cosine Transform (DCT) based

hybrid image/video coding. For example, JPEG2000 is the represen-

tative standard using wavelet based structure, while JPEG, MPEG-1,

MPEG-2, MPEG-4, H.261, H.263, H.264/AVC, and VC-1 all em-

ploy the DCT based hybrid image/video coding framework, which

is more widely used.

However, all image/video coding methods mentioned above

have the following limitation: if several frequency domain coef-

ficients of the signal are removed, the reconstructed signals after

inverse quantization and inverse transformation will never contain

the exact information in the original signals, and distortions are

introduced thereby. This is quite a normal rule in the existing

compression theory.

Another problem, especially for DCT coding, is the poor per-

formance at edges of objects. A single sharp edge in a block can be

rendered with significant distortion pattern after coding. Fortunately,

the CS recovery criterion is based on minimum sum of absolute pixel

value criterion, and blocks containing simple edges can be better re-

constructed in this approach.

Using CS theory in image coding has been studied theoretically

in [2], [3] and [4]. Various experimental results of the methods above

have also been given in [5]. For natural image coding, [6] has given a

block based image compression method combining CS and wavelet

transform. A comprehensive list of related works can be found at

[7].

In our research, we focused on incorporating the CS theory with

popular existing image/video coding schemes that employ DCT

transform. Due to the characteristics of the DCT transform, the

CS method can be embedded into the traditional coding and decod-

ing system seamlessly, and much better reconstruction for blocks

containing “edges” can also be achieved.

The rest of this paper is organized as follows. Section 2 is an

overview of the CS theory. Based on this, our new coding method is

proposed and illustrated in Section 3. Corresponding experimental

results are given in Section 4. Finally, Section 5 concludes this topic.

2. COMPRESSED SENSING THEORY OVERVIEW

The Shannon/Nyquist sampling theorem specifies that to avoid los-

ing information while sampling a signal, at least twice the signal

bandwidth should be covered. However, the compressed sensing

method, which is also called compressive sampling by some other

authors, can tolerate sampling and representing spatially sparse sig-

nals at a rate significantly below the Nyquist rate. It employs non-

adaptive linear projections that preserve the structure of the signal;

the signal is then reconstructed from these projections using an opti-

mization programming process [1].

For a piece of finite-length, real-valued 1-D discrete signal x, its

projection can be expressed as:

x =

NX
i=1

ψisi = Ψs, (1)

where x and s are N × 1 column vectors, and Ψ is an N × N
basis matrix, with the vectors {ψi} (i = 1, 2, · · · , N ) as columns.

Clearly, if Ψ is full ranked, x and s are equivalent representations of

the signal, s in the, for example, time or space domain and x in the

Ψ domain. The signal x has a sparse representation if it is a linear

combination of only K basis vectors. That is, only K coefficients

of {si} (i = 1, 2, · · · , N ) in (1) are nonzero and the rest (N − K)

ones are zero. The case of interest is K � N . The signal x is

compressible if the representation (1) has just a few large coefficients

and many small coefficients.
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Take M (M < N ) linear, non-adaptive measurement of x
through a linear invertible transform Ψ, namely,

y = Φx = ΦΨs = Θs, (2)

where Φ is an M × N matrix, M < N , and its M rows can each

be considered as a basis vector, usually orthogonal. x is thus trans-

formed, or down sampled, to an M × 1 vector y.

Since M < N , the task of recovering s from y seems ill-

conditioned. However, the additional assumption of the sparsity

of s makes it possible and practical. The compressed sensing the-

ory gives that when taking M � cK log N random measurements,

where c is a small positive number affecting the probability of recov-

ery, the signal s satisfying y = Θs can be exactly recovered under

the minimum �1-norm reconstruction with high probability [8], i.e.:

ŝ = arg min ‖s‖1, s.t. Θs = y. (3)

For real valued signal s, the �1-norm means the sum of absolute

value of its non-zero components. This is a convex optimization

problem that can be conveniently reduced to a linear program known

as basis pursuit [4].

3. PROPOSED IMAGE/VIDEO CODING METHOD

3.1. 2-D Signal Representation

For image and video coding, the signal is 2-D instead and few blocks

can be defined sparse by the above criterion. However, blocks con-

taining a sharp edge or several edges are more common. For these

blocks, the �1-norm criterion can not be directly applied since a large

percentage of pixels are not zero-valued. Instead, these blocks can

be defined as gradient sparse, i.e. significant pixel value variations

only occur at a few pixels. For an n × n block, the gradient can be

defined as [5]:

Dijs =

„
Dh,ijs
Dv,ijs

«
. (4)

Its horizontal components is

Dh,ijs =

j
si+1,j − sij i < n

0 i = n
, (5)

and its vertical component is

Dv,ijs =

j
si,j+1 − sij j < n

0 j = n
. (6)

Thus, the total variations of s is simply the sum of the magnitudes

of this discrete gradient at every point:

TV(s) =
X
i,j

p
(Dh,ijs)2 + (Dv,ijs)2 =

X
i,j

‖Dijs‖2 (7)

With these definitions, the image recovery can be recast as a

Second-Order Cone Programming (SOCP) problem [5]:

ŝ = arg minTV(s), s.t. Θs = y. (8)

Usually in popular image/video coding schemes, the transform

is usually 2-D Discrete Cosine Transform, the 2-D representation of

1-D DCT, to accommodate the characteristics of 2-D signals. How-

ever, for the purpose of simplicity and accordance with equation (1),

this paper proposes to employ 1-D DCT for the line-by-line scanned

vector of the block rather than 2-D transform. In this case, Ψ is the

1-D DCT basis matrix and Φ is an M × N matrix to reduce the

signal’s dimension.

3.2. The Quantization and Sampling Process

Different from the theoretical analysis and experiment of 2-D image

CS application in [5], all practical image and video coding schemes

inevitably adopt block coding, quantization, rounding, and other

methods to reduce coding length and computational complexity. To

make CS cooperate with existing coding schemes, corresponding

modifications are needed.

For problems in the form of (8), the reconstruction performance

increases as the dimension grows. However, the computational com-

plexity of this problem is O(n3) [1]. Thus, in practical implemen-

tation of image and video coding, there exists a trade-off between

complexity and coding performance. Dividing image into blocks is

necessary, and the block size becomes an important parameter. In

our practical implementation, the 8 × 8 block type is used for this

compromise.

Another problem in practical coding is quantization. The coding

process in theoretical demonstration uses double precision format

data in every procedure, which ensures the complete recovery of the

sparse signal. However, quantization and rounding are indispensable

in compression and incomplete recovery is expected. Therefore, in

the existence of quantization and rounding, the equality constraints

Θs = y in (8) is no longer effective, and another SOCP problem

with quadratic constraints is used:

ŝ = arg minTV(s), s.t. ‖Θs − y‖ � ε, (9)

where ε is a constraint to allow a certain extent of distortion.

As stated above, for blocks with relatively sparse gradient, we

can cut off unimportant frequency component representing the en-

tire block, and get reconstruction with equal or even better quality.

However, the authors in [1] proved that as long as the positions of

maintained frequency components do not form a subgroup or coset

of all frequency component positions (e.g., for discrete transforms,

the set of all even number positions form a subgroup of the set of

all positions, while the set of all odd number positions form a coset

of the set of all positions), successful recovery is ensured. There-

fore, with enough sampling rate, even random selection has almost

no possibility of failure. In our proposal, to keep the most signifi-

cant frequency components, we simply keep the first M ones out of

a total of N coefficients and the rest are truncated.

With all these specifications, we have our new proposal of cod-

ing and reconstructing scheme, as shown in Fig. 1.

3.3. Rate-Distortion Optimization (RDO)

Though theoretically lossless under ideal condition, the above pro-

posed CS based coding method still results in distortion due to quan-

tization, rounding, coefficient truncation. For natural images, a great

proportion of blocks are recorded with dense gradient distribution,

rather than the sparse conditions. In this case, the CS method might

not work very well. Consequently, with truncated number of fre-

quency components, the CS method may frequently lose its rate-
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Fig. 1. The flow chart of the proposed coding scheme based on

compressed sensing.

distortion (RD) performance to the DCT scheme, although the trun-

cation (or sampling) process ensures a lower bit rate than that of

DCT for the same block with the same quantization step.

Generally, the CS coding method is more suitable for the block

with sparse gradients, while the DCT method fits complicated blocks

better.

To take the advantage of both methods, this paper proposes to

combine the above proposed CS method and the existing DCT based

method together, by defining the CS based method as a new coding

mode. Each 8 × 8 block is encoded and decoded in normal DCT

coding mode or the proposed CS coding mode. RDO strategy [9]

is introduced to adaptively select the mode with better RD perfor-

mance. A flag bit is inserted into the bitstream of each 8 × 8 block

to indicate the selected mode if this block contains any non-zero AC

coefficients. Both modes employ the same existing coefficient en-

tropy coding method in H.264/AVC.

3.4. Truncation Rate M

As proposed in 3.1 and 3.2, one block is first rearranged line by

line to form a vector, and this vector is 1-D DCT transformed and

truncated to maintain the first M coefficients. Since 1-D DCT coef-

ficients are expected bigger at lower frequency and smaller at higher

frequency in the sense of probability, as quantized more heavily,

more coefficients turn zero from higher frequency downward. To

keep the efficiency of the truncation process, we generally lower the

value of M as the quantization step gets bigger.

The choice of truncation rate M for certain quantization step is

still being investigated.

4. EXPERIMENTAL RESULTS

Our algorithm is integrated into the JM12.2 H.264/AVC codec for in-

tra frame coding. MATLAB is used as computational engine, seam-

Table 1. 4 pairs of parameters corresponding to QP values in our

experiment

QP 22 27 32 37

Truncation rate M 40 32 26 20

Quantization step q 6 12 25 45

Table 2. Coding efficiency comparison result (average results of 4

QPs: 22, 27, 32, 37 according to the calculation method in [10])

Image or sequence Bitrate reduction (%) PSNR gain (dB)

rush cif 1 -5.20 0.511

rush cif 2 -2.44 0.139

camera 128x128 -5.96 0.427

tiger 720x480 -2.95 0.254

carphone cif -2.21 0.145

foreman cif -2.76 0.161

Average -3.59 0.272

lessly combined with JM12.2, to solve the SOCP problem to recon-

struct blocks. The open-source MATLAB code in [5] is used in our

experiment. For simplicity, currently only direct current (DC) pre-

diction is enabled and only fixed transform block size of 8×8 is used,

since, as stated in 3.2, the reconstruction performance deteriorates as

block size decreases, and 4 × 4 blocks are too small for linear pro-

gramming to perform normally. Therefore, the 1-D DCT employed

for the CS method is 64 × 1 dimensional, while the corresponding

2-D DCT is 8 × 8 dimensional.

The proposed method is tested at four different quantization

steps: for 2-D DCT coefficients QP 22, 27, 32, 37 are used, and the

corresponding 1-D DCT coefficients for CS are quantized at four

states listed in Table 1.

The relationship between QP and quantization step q in H.264/AVC

can be approximately described as:

q =
5

2
× 2

QP−12
6 . (10)

As shown in the table above, we slightly decreased the quantization

step for each state since the 1-D DCT coefficients still need to be

truncated. Making them larger can keep the RDO method more bal-

anced.

In our experiment, we tested on image frames, intra frames for

different video sequences, with traditional DCT method and our pro-

posed compressive sensing method, respectively. The bitrate reduc-

tion and PSNR gain for each frame, calculated according to the cri-

teria in [10], are shown in Table 2.

The first 4 rows in Table 2 correspond to the 4 frames in Fig. 2.

For images and video frames containing fierce impulses, e.g. many

stars in a night sky background, as shown in Fig. 2(a) and 2(b),

or intense lines in relatively smooth background, e.g. some photo

images (Fig. 2(c)) and most cartoon video sequences, as shown in

Fig. 2(d), this RDO method can generally have notable coding gain.

Common sequences like carphone and foreman have lower coding

gain for relatively lacking this characteristic.
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(a) rush 1 (b) rush 2

(c) camera (part) (d) tiger

Fig. 2. Frames containing impulses (2(a) and 2(b), from sequence

rush) or intense edges (2(c)), and a cartoon sequence frame (2(d)).

(a) Blocks using CS method (b) Blocks using DCT method

Fig. 3. Blocks employed compressive sensing (3(a)) vs. blocks

employed traditional DCT (3(b)) in the image camera in Fig. 2(c)

compressed with RDO method.

An example of the effectiveness of the proposed RDO method is

shown as follows.

Taking part of image camera in Fig. 2 for example, Fig. 3 is an

illustration of this improvement. Non-white blocks in Fig. 3(a) are

coded with our new CS method in the reconstruction image using

RDO, while non-white blocks in Fig. 3(b) employ traditional DCT

method. It should be noticed that if a white block in Fig. 3(a) is

also white in Fig. 3(b) in the same position, this block is coded in

“bypass” mode, i.e., this block only contains DC value, and neither

CS nor DCT is employed for this block. Clearly, simple blocks with

relatively sparse gradient distribution, especially those with intense

edges, e.g. the block containing the brighter point in the background,

and blocks containing edges of the photographer’s upper arm, shoul-

der, and hair, tend to be assigned with compressive sensing coding,

while complicated blocks, e.g. the photographer’s face and neck,

have a tendency to enable traditional DCT coding.

In our experiment, only images and intra predicted frames

are tested and analyzed. Further experiments using more intra-

prediction modes, inter predicted frame coding, and variable block

sizes will be carried out in the future. Adaptive quantization step q
and truncation rate M selection will also be studied.

Finally, though block-based method is used to balance the effi-

ciency, the encoding complexity remains high for the SOCP process

in reconstruction. Fast mode selection method between normal DCT

coding mode and the CS mode will be studied to reduce encoding

complexity in the next step. Also, fast solution to the optimization

problems in this paper can be studied to speed up the reconstruction

process.

5. CONCLUSION

This paper investigated into the CS theory in signal processing and

incorporated it into the existing image/video coding framework. The

new approach has been tested both theoretically and on the prac-

tical H.264 coding platform, and significant coding gain has been

achieved. The CS theory itself can be used in many fields other

than image/video compression, and the proposed adaptation method

between CS coding and normal coding can be generalized to other

signal processing application, e.g., audio coding.
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