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ABSTRACT 

Optical Character Recognition (OCR) of overlaid text in video 
streams is a challenging problem due to various factors including 
the presence of dynamic backgrounds, color, and low resolution. In 
video feeds such as Broadcast News, a particular overlaid text 
region usually persists for multiple frames during which the 
background may or may not vary. In this paper we explore two 
innovative techniques that exploit such multi-frame persistence of 
videotext. The first technique uses multiple instances to generate a 
single enhanced image for recognition. The second technique uses 
the NIST ROVER algorithm developed for speech recognition to 
combine 1-best hypotheses from different frames of a text region. 
Significant improvement in the word error rate (WER) is obtained 
by using ROVER when compared to recognizing a single instance. 
The WER is further reduced by combining hypotheses from frame 
instances, which were generated using character models trained 
with different binarization thresholds. A 21% relative reduction in 
the WER was achieved for multi-frame combination over decoding 
a single frame instance. 

Index Terms— Optical Character Recognition, Hidden 
Markov Models, Videotext

1. INTRODUCTION 

Huge explosion of multimedia content, especially in form of 
archived or streaming videos has resulted in a critical need for 
indexing and archiving such content. While most of the 
information in video such as Broadcast News (BN) videos is in the 
visuals (faces, scenes, etc.) and the audio, often unique information 
is present in text form either as overlaid text that describes the 
scene or scene text that appears as part of the scene. A key step in 
indexing based on text in video is to recognize such text [1],[2]. In 
[2], we had presented a hidden Markov model (HMM) based 
recognition system configured for recognizing overlaid text in BN 
videos. The basic component of the system described in [2] is our 
script-independent Byblos Optical Character Recognition (OCR) 
[3] engine, which is designed for machine-printed documents and 
has been recently applied to handwritten documents [4].  

The emphasis in [2] was on customization of the Byblos OCR 
system for videotext recognition. Most of the customization was 
focused on the pre-processing of the text regions. Since videotext 
typically has low resolution, the first step in pre-processing was to 
upsample the text images by a fixed factor. Next, given that our 
OCR engine expects black on white binarized images, we also 
developed novel techniques for binarizing the color text images.  

In this paper, we postulate that the multi-frame persistence of 
videotext can be exploited to mitigate challenges posed by varying 
characteristics of videotext across frame instances. In [2], we 
leveraged the multi-frame persistence property of videotext to 

generate a single, “contrast enhanced” image for downstream 
processing. In this paper, we first compare the recognition 
performance on the contrast enhanced image to recognizing an 
empirically determined single best instance of a text region. Next, 
inspired by the system combination [5][6] approaches that have 
been used with significant success in speech recognition, we 
explore combining hypotheses from multiple instances of a 
particular text region. Specifically, we apply the Recognizer 
Output Voting Error Reduction (ROVER) algorithm [5] for 
combining 1-best hypotheses from multiple instances to generate a 
hypothesis which is significantly better than any single instance. 
Additional reduction in WER are achieved by: (a) incorporating 
the contrast enhanced image in the hypotheses set for combination, 
and (b) using character models trained with different binarization 
thresholds to decode different instances of a text region. 

2. OVERVIEW OF HMM BASED VIDEOTEXT OCR 

Our videotext OCR system is a customized version of the HMM 
based BBN Byblos OCR system developed for recognizing text in 
printed documents.  A pictorial representation of the BBN Byblos 
OCR system [3] is given in Figure 1. Knowledge sources are 
depicted by ellipses and are dependent on the particular language 
or script. The OCR system components themselves are identified 
by rectangular boxes and are independent of the particular 
language or script. Thus, the same OCR system can be configured 
to perform recognition on any language. 

The BBN Byblos OCR system can be subdivided into two basic 
functional components: training and recognition. Both training and 
recognition share a common pre-processing and feature extraction 
stage. The pre-processing and feature extraction stage starts off by 
first deskewing the scanned image and then locating the positions 
of the text lines on the deskewed image. Next, the feature 
extraction program computes a feature vector, which is a function 
of the horizontal position within the line. First, each line of text is 
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Figure 1: Hidden Markov model based Byblos OCR engine. 
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horizontally segmented into a sequence of thin, overlapping steps. 
For each frame we then compute a script-independent, feature 
vector that is a numerical representation of the frame. 

The character models comprise of multi-state, left-to-right 
HMMs. Each state has an associated output probability distribution 
over the features. The character HMMs are trained on transcribed 
text lines using the Expectation Maximization (EM) algorithm.  
Note that the model topology including number of states, and 
allowable transitions is typically optimized for each script.  

The language model (LM) used in the BBN Byblos OCR 
engine is a character or word n-gram LM estimated from the 
character HMM training data and other available sources of text. 
The recognition engine performs a two-pass search. The first pass 
uses a bigram LM to generate a lattice of characters or words. The 
second pass uses a trigram LM and optionally more detailed 
character HMMs to generate a 1-best hypothesis, N-best 
hypotheses, or a lattice. 

The videotext OCR problem can be broken down into these 
three broad steps [2]: 

1. Text detection: Detecting the existence and location of text 
within each frame in the video stream. 

2. Pre-processing: Enhancing (removing background, 
upsampling, etc.) and binarizing the text image. 

3. Recognition: Recognizing detected and pre-processed 
videotext.  

In this paper all experiments are performed on manually 
detected text regions.  Therefore, we focus on steps 2 and 3. 

Pre-processing of videotext involves two key steps which are 
different from the processing of document images. The first step is 
to upsample the videotext region by a fixed factor (typically a 
factor of 4). The upsampling is performed to mitigate the effect of 
low resolution of videotext. The second step is to binarize the color 
text images into black text on white background or vice-versa, 
depending on the text and background characteristics. For 
binarization, we use a simple intensity-based procedure.  In this 
procedure, all pixels with intensity greater than some threshold are 
set to black in the output image. For images with low-intensity 
text, pixels with intensity less than the threshold are set to black. 
The thresholds on the intensity are determined empirically on a 
development set as a percentile of intensity for each frame.  

Following binarization, we extract the same set of features from 
videotext as for machine-printed OCR [3]. For recognition, we 
estimate character HMMs from the available training data with 
different parameter tying configuration depending on the amount 
of available training data.  Next, the two-pass recognition strategy 
described earlier is used to recognize all I-frames for text regions 
in a development set. Then, we empirically determine the I-frame 
that results in lowest character error rate (CER) or word error rate 
(WER). On a validation set as well as for the runtime system, the 
recognition result from the empirically determined lowest 
CER/WER I-frame is used for evaluating performance.  

3. VIDEOTEXT OCR CORPUS 

The results reported in this paper are performed on overlaid 
videotext data collected from English Broadcast News videos.  For 
our experiments we used the TDT-2 corpus [7] of CNN and ABC 
news broadcasts recorded in 1998. We annotated text region 
boundaries and frame spans manually. Each text region consisted 
of a single line of text with possibly multiple words. A single 
transcription ground truth value was assigned to each text region. 
Approximately 7 hours of video each from CNN and ABC was 

manually annotated. All text was annotated except for the moving 
text crawler in the CNN videos.  

The text density in CNN was significantly higher for CNN than 
for ABC: 6.6 text regions per frame versus 2.1 text regions per 
frame. The corpus therefore contained significantly more CNN text 
data. Specifically, for CNN we annotated 16,719 text regions and 
for ABC 5,567 text regions were annotated. We held out a fair 
development set of 871 regions for CNN and 475 regions for ABC 
– none of the regions in the development set were included in the 
training set.  

In addition to reporting results on the fair development, we 
present results on data provided by NIST as dry-run data for 2005 
videotext OCR evaluation. The NIST dry run test set is from the 
same source channels as our internal set, but from a different time 
period in 1998. In total, there are 537 text regions in this test set.  

4. MULTI-FRAME CONTRAST ENHANCEMENT 

A convenient property of overlaid videotext is that the text remains 
relatively constant in appearance over a few frames, while the 
background varies. In [2], we leveraged this characteristic for 
improving the quality of the binarized images. For images that 
contain light/dark text on a dark/light background, we compute an 
enhanced image by taking the minimum/maximum intensity value 
across a number of instances of the text line, after they are aligned.  
This contrast enhanced image, referred to as “min-image” [2] is 
then binarized using the procedure described in Section 2 before 
training and/or recognition. 

In addition to providing an enhanced image for recognition, the 
above procedure provides an alternative approach to the empirical 
selection described in Section 2 for generating the 1-best character 
sequence for a text region 2. That is, instead of empirically 
determining the best I-frame to decode on a development set, one 
only needs to recognize the contrast enhanced image for each text 
region. Therefore, we performed experiments to compare the 
contrast enhanced image to the empirically determined best I-frame 
for recognition. 

First, we trained character HMMs on the entire training data 
consisting of 22K text regions. For each text region in the training 
corpus, we included 5 uniformly selected instances for character 
HMM estimation. This was done to increase the coverage of 
different types of distortions that manifest themselves over the 
lifetime of a text region. All training images were binarized using a 
threshold on pixel intensity. This threshold was chosen to be 80th

percentile for high intensity text and 20th percentile for low 
intensity text. A trigram character LM was estimated from the same 
training data. Including the punctuations and numerals, the 
recognition lexicon consisted of 86 characters. Each character 
HMM had an associated 512 Gaussian mixtures for modeling the 
output feature distribution at each state.  

The first row of Table 1 shows that the WER on the 5th I-frame 
decoded with the models described above is 32.7%. Next, we 
generated a min-image using 15 uniformly selected I-frames for 
each text region in the test data. Decoding with the same models as 
used for recognizing the 5th I-frame resulted in a WER of 32.2%, 
which is 0.5% absolute better than the WER on the 5th I-frame. 
Given that the optimal model to decode the min-image is likely to 
be the one that is trained on min-images, we trained a new set of 
character HMMs on the min-images in the training corpus. Next, 
we decoded the min-image in the test data with these models. The 
WER reduced to 32.0%, a 0.7% absolute reduction in WER over 
the 5th I-frame.  
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Frame(s) for Training Frame for Reco. %WER 
5 I-frames per region  5th I-frame 32.7 
Same as above Min-image 32.2 
Min-image Min-image 32.0 

Table 1: Improvements in WER on development set for using 
contrast enhanced text image.

5. MULTI-FRAME HYPOTHESES COMBINATION 
5.1. Motivation for multi-frame hypotheses combination 
The characteristics of the text (e.g., contrast) that impact 
recognition accuracy can change significantly from one frame 
instance to another. As a result, the error rate and the type of errors 
vary significantly across different instances of a text region. 
Therefore, we performed experiments to characterize the change in 
error rate from one instance to another by measuring the error rate 
associated with a single selected instance and comparing it with the 
error rate of the best recognition result picked (using the reference 
transcription) from uniformly sampled 5, 15, and 25 I-frames, 
respectively.  For the single instance, as described in section 3, we 
selected the 5th (or last) I-frame for each text region.  

In Table 2, we summarize the oracle WER for selecting the 
best hypothesis from different I-frames for a particular text region. 
The results indicate that significant improvements in WER can be 
achieved by selecting the best hypothesis from even 5 instances of 
a text region. Including more number of instances of a text region 
into the oracle selection gives further reduction in the WER, 
however the improvements seem to saturate after 15 instances.  

Condition %WER 
Recognition on 5th I-frame (Baseline) 32.7 
Oracle for 1-best across 5 I-frames 23.6 
Oracle for 1-best across 15 I-frames 22.7 
Oracle WER for 1-best across 25 I-frames 22.5 

Table 2: Oracle WER on development set for selecting best 
hypothesis across multiple instances of a text region. 

5.2. Multi-frame hypotheses combination using ROVER
In automatic speech recognition (ASR) it has been shown [5],[6] 
that a single input waveform can be processed by multiple systems 
and then the different system outputs can be combined to produce 
a 1-best answer that is significantly better than the output of any 
single system. Most of these combination approaches are based on 
the NIST ROVER [5] principle.  In the case of videotext OCR we 
have multiple instances of the input image that are processed by 
the same recognition engine – but the key hypothesis combination 
principle is still the same. As shown in Table 2, the lower bound in 
error rates across 15 I-frames is less than two-thirds the error rate 
of a single-frame answer. Therefore, in this section we explore 
applying the NIST ROVER algorithm for combining hypotheses 
from multiple frame instances of a text region.  

The NIST ROVER [5] algorithm has two steps. First, the 
multiple word hypotheses are aligned using dynamic programming 
(DP) into a single word transition network. Next, each branching 
point in the word transition network (WTN) is evaluated using a 
voting mechanism, where the link with highest number of votes is 
selected as the best scoring word. The sequence of best scoring 
word selected from each branching point constitutes the 1-best 
word sequence. The use of confidence scores for each word is 
optional for the voting. However, confidence scores have shown to 

improve robustness, especially when there are fewer system 
outputs to be combined. 

Application of the ROVER algorithm to videotext recognition 
consists of two steps, which are similar to the steps in ASR system 
combination. First, using DP the 1-best character hypotheses from 
different frame instances of a text region are aligned to create a 
WTN for each text region. Next, the ROVER voting algorithm is 
applied to the WTN to generate the best character sequence.  

In the first set of experiments using NIST ROVER, we 
compared combining hypotheses from 5 I-frames and 15 I-frames 
respectively. The character HMM and character LM described in 
the first row of Table 1 was used to generate 1-best character 
sequences for the I-frames of a particular text region. Confidence 
scores for 1-best hypothesis for each frame instance was generated 
using consensus network [8] transformation of character lattices 
produced by our two-pass OCR decoder.  

As shown in Table 3, applying ROVER on hypotheses from 5 
I-frames results in a 6% relative improvement over the baseline 
result of using the output from a single frame instance. Combining 
15 I-frames resulted in further improvement and the overall 
reduction in WER is 8% relative to the baseline. 

In Figure 2, we illustrate the effectiveness of ROVER based 
hypotheses combination. As shown in the figure, the error 
characteristics vary significantly across frame instances, primarily 
due to the different types of distortions in each instance. Although 
several instances, including the 5th I-frame contain errors, the 
ROVER still results in the correct answer. 

5.3 ROVER with different binarization thresholds 
In the results reported thus far, we have trained our character 
HMMs with 5 I-frame instances of a text region. All 5 instances 
are binarized at the same threshold (80th percentile of pixel 
intensity for high-intensity text images).  Different instances of a 
text region in the test set are also binarized at the same thresholds. 
Since overlaid videotext oftentimes consists of non-uniform, noisy 
background, it is unlikely that a single threshold for binarization 
will perform the best across all instances of a text region. 
Therefore, we trained three sets of models on the same 5 I-frame 
instances of a text region in the training data using a binarization 
threshold of 75th, 80th, and 85th percentile, respectively.  

On the test data, instead of binarizing all 15 I-frames with a 
single threshold, we now use the following interleaved ordering for 
binarizing the same set of 15 I-frames. The first I-frame is 
binarized with a threshold of 75h percentile, the second instance at 

Figure 2: Example of ROVER hypotheses combination. 
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80th percentile, the third at 85th percentile, the fourth at 75th

percentile, and so on. Each binarized frame is decoded with 
character HMMs trained using text images binarized with the 
matching threshold, that is, a frame binarized at 75th percentile is 
decoded with models trained with 75th percentile binarization 
threshold applied to the training images. Thus, the set of images we 
are decoding in the test set is the same as the 15-frame 
combination described in Section 5.2, but 10 of the 15 frames are 
binarized at a threshold different from 80th percentile and decoded 
with models trained with the matched binarization threshold (75th

or 85th percentile). 
As shown in Table 3, combining 15 I-frame hypotheses 

generated with different binarization strategy described above 
lowers the WER to 29.0%, a 1.2% absolute reduction in WER over 
combining hypotheses from the same 15 frames binarized at a 
single threshold and processed using a single set of character 
HMMs trained with the same threshold. Therefore, the multiple 
binarization strategy is effective in capturing the variation in the 
characteristics of videotext across different frame instances.  

Condition %WER 
Recognition on 5th I-frame (Baseline) 32.7 
Recognition on Min-image 32.0 
ROVER on 5 I-frames  30.8 
ROVER on 15 I-frames (same binarization) 30.2 
ROVER on 15 I-frames  (3 sets of 5 I-frames 
binarized at 3 different thresholds) 

29.0 

ROVER on 18 frames (Above 15 I-frames + Min-
image binarized at 3 different thresholds) 

27.2 

Table 3: Improvements obtained using multi-frame hypotheses 
combination on development set. 

In Section 4, we showed that the contrast enhanced image (min-
image) results in a lower WER than the WER on the 5th I-frame. 
Although the WER reduction is modest, the results on the min-
image have different error characteristics than the regular I-frames. 
Therefore, we decided to incorporate the min-image into our 
hypotheses combination framework. First, we binarized all min-
images in the training corpus at three different binarized thresholds 
(75th, 80th, and 85th percentile). Next, we estimated separate 
character HMMs from each of these different sets of binarized 
min-images. On the test data, we binarize the min-images at the 
same three binarization thresholds as in training. Then, we decode 
these binarized images with character HMMs trained with matched 
binarization threshold. Finally, the 3 min-image hypotheses are 
added to the set of 15 I-frame hypotheses generated using different 
binarization thresholds and character HMMs. ROVER on this set 
of 18 hypotheses reduces the WER on the development set to 
27.2% – a 17% relative improvement over the baseline WER of 
32.7% obtained on the 5th I-frame for each text region. This 
reduction in error rate is about 55% of the maximum reduction 
possible based on the oracle WER analysis in Table 2.    

Given the parameters of the ROVER algorithm, which include 
parameter for trading-off confidence scores and number of 
occurrence of a character ( ), confidence score for null arcs 
(conf@), and the voting strategy (maximum confidence and 
average confidence) were optimized on the development set, we 
decided to compare performance on the validation set (NIST dry-
run data).  As shown in Table 4 below, the best multi-frame 
combination strategy results in a 20% relative improvement over 
the baseline configuration of decoding the 5th I-frame. 

Condition %WER 
Recognition on 5th I-frame (Baseline) 31.2 
ROVER with multiple binarization of I-frames 
and min-image 

24.9 

Table 4: Summary of improvements with multi-frame 
combination on NIST validation set. 

6. CONCLUSIONS AND FUTURE WORK 

In this paper, we successfully applied the NIST ROVER algorithm 
for combining hypotheses from multiple instances of overlaid text 
in Broadcast News videos. We achieved large reduction in the 
word error rate with multi-frame combination, especially when 
instances of a text region are processed with different binarization 
thresholds. The multi-frame contrast enhancement technique 
showed only a modest gain over the baseline result of using the 5th

I-frame. Still including the hypotheses from the contrast-enhanced 
image in the set of hypotheses to combine resulted in additional 
gain for ROVER based multi-frame hypotheses combination.  

Our analysis of the results indicates that further reduction in 
WER can be obtained by including N-best hypotheses instead of 1-
best hypothesis into the multi-frame combination. Therefore, future 
work will focus on confusion network combination (CNC) [9] for 
combining confusion networks instead of 1-best from different 
instances of a text region.  
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