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ABSTRACT
The generalized singular value decomposition based lin-

ear discriminant analysis (LDA/GSVD) algorithm has been
used to solve the singularity problem faced by the traditional
LDA, but it is still computationally intensive in case of high
dimensional patterns; and not applicable to the nonlinearly
distributed patterns. In this paper, a new kernelized discrim-
inant analysis algorithm based on a modified GSVD is pro-
posed. In the proposed algorithm the original input space
is implicitly mapped into a higher dimensional feature space
from which features are extracted by using a modified GSVD
which circumvents the calculation of the large-dimension sin-
gular vectors without losing the discriminative information.
The proposed algorithm solves the nonlinear distribution prob-
lem and has the advantage of being computational efficient
thanks to the new feature extraction method introduced in this
paper. It is shown through extensive computer simulations
on the typical pattern recognition benchmark databases that
the proposed algorithm outperforms the existing linear algo-
rithms and the kernelized ones.

Index Terms— pattern recognition, pattern classification,
feature extraction, face recognition

1. INTRODUCTION

The classical linear discriminant analysis (LDA) is a well-
known approach for dimensionality reduction in pattern recog-
nition. However, its application is limited due to two prevail-
ing issues: the singularity or small sample size (SSS) issue
and the nonlinear distribution issue.
A good number of LDA variants have been proposed to

address the singularity issue [1]-[3]. A recent one is the LDA/
GSVD algorithm [3], in which the generalized singular value
decomposition (GSVD) [4] is used to solve a generalized eigen-
value problem. The application of GSVD to LDA not only
provides a framework for finding the feature vectors with high
recognition accuracy, but more importantly, it also relaxes
the non-singularity requirement. However, this algorithm en-
counters excessive computational problem when the samples
have a large dimension. Also, like the other linear algorithms,

LDA/GSVD still cannot handle the nonlinear distribution is-
sue.
For the nonlinear distribution problem, a remedy is to use

a kernel machine [5] that linearizes the pattern distribution
through a special mapping of the input samples. The integra-
tion of the kernel machine with linear discriminant methods
leads to new nonlinear algorithms with enhanced recognition
accuracy [6]-[9].
Applying the GSVD technique and the kernelization tech-

nique to the classical LDA at the same time can lead to a
new solution that solves both of the problems [9]. In this
paper, we propose a similar but different solution to what
proposed by C.H. Park et al. In the proposed algorithm, re-
ferred to as mGSVD-KDA, the original input samples are
nonlinearly mapped into a higher dimensional space where
the pattern distribution is linearized; and a modified GSVD
scheme is used to extract features in that space. The modified
GSVD allows us to circumvent the calculation of the high
dimensional null space of the feature vector matrix, which
contains no discriminative information but requires vast com-
puting resources in the conventional GSVD framework. The
proposed algorithm overcomes the computational complexity
problem associated with the high dimensional patterns and
has the ability to classify nonlinearly distributed patterns, lead-
ing to an enhanced recognition accuracy. As shown by the
simulation results, the proposed algorithm outperforms the
KDA/GSVD algorithm in terms of recognition accuracy.

2. REVIEW OF LDA/GSVD

The objective function of the LDA

ξopt = arg max
ξ

ξT Sbξ

ξT Swξ
, (1)

where Sb and Sw are, respectively, the between-class and
within-class scatter matrices, has no solution in the SSS situ-
ation due to the singularity of Sw. However, linear discrimi-
nant analysis based on the generalized singular value decom-
position is able to find an optimal transformation matrix G
that consists of ξ’s even when Sw is singular.
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Given a set of n m-dimensional training samples xl, l =
1, · · · , n, that consists of N classes where the ith class has
ni samples, the class centroid is c(i), the global centroid is
c, n =

∑N
i=1 ni is the sample size, and Mi is the index set

(n1 + n2 + · · · + ni−1 + 1, · · · · · · , n1+n2 + · · · + ni) of
samples in the ith class. We define

Hb =
[√

n1(c(1) − c), · · · ,
√

nN (c(N) − c)
]
,

Hw =
[
(x1 − c(1)), · · · , (xn − c(N))

]
l∈Mi

.
(2)

Let us define a matrix C =
(HT

b

HT
w

)
, then SVD of C can be

obtained as
C = P

(
R 0
0 0

)
QT , (3)

where R(k×k) is a diagonal matrix whose components are the
non-zero singular values of C sorted in a non-increasing or-
der, k = rank(C), and P((N+n)×(N+n)) and Qm×m are or-
thogonal matrices. The matrix P can be partitioned as P =
(P1, P2), where P1 and P2 have k and n+N−k columns, re-
spectively. P1 can be further partitioned as

(
P11
P12

)
, where P11

and P12, respectively, take the first N and the last n rows of
P1. Now, using SVD, we can write

UT P11W = Σb =

⎛
⎝Ib 0 0

0 Db 0
0 0 0b

⎞
⎠

(N×k),

(4)

V T P12W = Σw =

⎛
⎝0w 0 0

0 Dw 0
0 0 Iw

⎞
⎠

(n×k),

(5)

where matrix U ,V and W are orthogonal matrices and Σb

and Σw are diagonal matrices. In Σb and Σw, Ib and Iw are
identity matrices, 0w and 0b are zero matrices, and Db and
Dw are diagonal matrices.
Combining (3), (4), and (5) gives(

HT
b

HT
w

)
Q = (P1R, 0) =

(
UΣbW

T R 0
V ΣwWT R 0

)
, (6)

LetX = Q

(
R−1W 0

0 I

)
, then (6) can be transformed into

HT
b X = U(Σb 0), HT

wX = V (Σw 0). (7)

From which we have,

XT SbX =
(

Σ2
b 0

0 0

)
= D1, X

T SwX =
(

Σ2
w 0
0 0

)
= D2,

(8)
Thus, both Sb and Sw are diagonalized by matrix X . Since
the null space of D1 has little discrimination information [3],
the only columns of matrix X that correspond to the range
space of Sb need to be maintained during the feature extrac-
tion, and they collectively form the optimal transformation
matrix G. The LDA based on this conventional GSVD may
encounter excessive computation load during the SVD of C
in case of high dimensional patterns.

3. KERNELIZATION OF THE MODIFIED GSVD

We now present a kernelization method that can effectively
overcome the computational complexity problem associated
with high dimensional patterns and capture the nonlinear pat-
tern distribution. A kernel [5] is a nonlinear map, Φ : χ → F ,
xl → φl, designed to map the samples x’s of the input space
χ into a higher f -dimensional feature spaceF , in which a lin-
ear discriminant analysis techniques is applied. However, the
high dimensionality of the feature space makes this process
computationally infeasible practically. This problem can be
overcome by using the so called “kernel trick”, in which the
inner product of the mapped vectors in the feature space can
be implicitly derived from the inner products between the in-
put samples [5]. Since the kernel technique involving the in-
ner product makes computation in high dimensional feature
space feasible and efficient, it can also be used to overcome
the computational complexity problem associated with high
dimensional patterns.
Like in the LDA/GSVD algorithm, we first define

Φb = [
√

n1(φ(1) − φ), · · · ,
√

nN (φ(N) − φ)]

Φw = [(φ1 − φ(1)), · · · , (φn − φ(N))]l∈Mi
,

(9)

and Γ =
(ΦT

b

ΦT
w

)
, where φ(i) is the centroid of the ith embedding

class, and φ the global centroid of the mapped samples in the

feature space. The SVD of Γ is given by Γ = P̃

(
R̃ 0
0 0

)
Q̃T ,

where P̃((N+n)×(N+n)) and Q̃(f×f) are orthogonal matrices,
and R̃(z×z) with z = rank(Γ) is a diagonal matrix with its
elements being equal to non-zero singular values of Γ sorted
in a non-increasing order.
Due to the high dimensionality of Γ, it would be practi-

cally not feasible to conduct the SVD directly. Fortunately,
the left singular vector matrix P̃ with lower dimension and
singular value matrix R̃ can be evaluated separately by using
the kernel method. We form a symmetric matrix as

ΓΓT =
(

ΦT
b Φb ΦT

b Φw

ΦT
wΦb ΦT

wΦw

)
, (10)

where each of the four sub-matrices is in an inner product
form. The P̃ is exactly the eigenvector matrix of ΓΓT and
the matrix R̃ is the square root of its eigenvalue matrix. We
can construct the kernel matrix K = (klh)l,h=1,··· ,n whose
elements are the inner products in the feature space deter-
mined through a kernel function. Then, we can express the
sub-matrices in (10) as

ΦT
b Φb = D(B − L)T K(B − L)D

ΦT
wΦw = (I − A)K(I − A) (11)

ΦT
b Φw = D(B − L)T K(I − A),
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where,

A = diag(A1, · · · , AN ), Ai = (1/ni)ni×ni ,
B = diag(B1, · · · , BN ), Bi = (1/ni)ni×1,
D = diag(D1, · · · , DN ), Di = (

√
ni)ni×ni

,
for i = 1, · · · , N, L = (1/n)n×N , and
I is an n × n identity matrix.

The eigen-decomposition of ΓΓT generates the eigenvec-
tor matrix P̃ and the non-zero eigenvalue matrix R̃ as

ΓΓT = P̃

(
R̃2 0
0 0

)
P̃T (12)

The leftmost z columns of P̃1, where z = rank(ΓΓT ), form
the matrix P̃1, and the firstN rows of P̃1 form the matrix P̃11.
The SVD of P̃11 provides the orthogonal matrices Ũ and W̃
such that P̃11 = ŨΣ̃bW̃ .
Suppose Q̃ is partitioned as Q̃ = (Q̃1, Q̃2), where Q̃1 and

Q̃2 correspond to the range space and the null space of ΓΓT ,
respectively. Then matrix Γ can be rewritten as

Γ = (P̃1 P̃2)
(

R̃ 0
0 0

)(
Q̃T

1

Q̃T
2

)
= P̃1R̃Q̃T

1 (13)

From this equation, we have Q̃1 = ΓT P̃1R̃
−1. Similar to

defining X in Section 2, let X̃ = Q̃

(
R̃−1W̃ 0

0 I

)
, then,

X̃z , the matrix consisting of the first z columns of X̃ can
be expressed as X̃z = ΓT P̃1R̃

−2W̃ , in which Q̃ is substi-
tuted and does not need to be explicitly computed. Let Λ =
W̃T R̃−2P̃T

1 , we have X̃T
z = ΛΓ. Further, let G̃T = ΛvΓ,

where v = rank(ΦT
b Φb), and Λv consists of the first v rows

of Λ. The columns of G̃ are the extracted feature vectors of
the feature space.
Given a test image xt with its mapping in the feature space

being φt, the kernel function is applied again to obtain ql =
k(xl, xt) = 〈φl, φt〉, and subsequently form the vectors,

Qb =
[√

n1(q(1) − q), · · · ,
√

nN (q(N) − q)
]

Qw =
[
(q1 − q(1)), · · · , (qn − q(N))

]
l∈Mi

,
(14)

where q(i) = 1
ni

∑
l∈Mi

ql and q = 1
n

∑n
l=1 ql. Since Γφt =(QT

b

QT
w

)
, the projection of φt on the feature vectors can be found

as w = G̃φt = Λv

(QT
b

QT
w

)
.

4. EXPERIMENTS

Simulations are designed to compare the proposed algorithm
with the existing algorithms in two categories. For linear al-
gorithms, mGSVD-KDA with the linear kernel, LDA/GSVD,
RDA [1] and PCA+LDA [2], four small sample size (SSS)
databases YALE, AR, Dataset1, and Dataset2 are used. For

Table 1. Summary of Databases
Database size Dim. # class # train # test

SSS Yale 165 10304 15 75 90
AR 4000 17640 15 75 120

Dat.1 210 7454 7 49 161
Dat.2 320 2887 4 160 160

LSS Isolet 7797 617 26 780 1040
MUSK 6598 166 2 500 400

Table 3. Recognition rates (%) and execution time (seconds)
with large sample size databases

Database Isolet MUSK
Recog. Exe. Recog. Exe.

Algorithm Rate Time Rate Time
Linear LDA 87.5 79.1 89.3 30.7

mGSVD-KDA 95.2 92.5 97.9 42.4
Polyn. KDA/GSVD 94.1 131.7 97.0 49.9

KRDA 93.8 84.0 93.8 36.6
KPCA+LDA 93.3 95.1 92.8 40.6
mGSVD-KDA 95.5 98.9 98.0 38.6

RBF KDA/GSVD 94.4 144.6 97.0 52.4
KRDA 93.4 96.1 93.5 37.9
KPCA+LDA 92.2 130.2 93.8 50.5

nonlinear algorithms, mGSVD-KDA, KDA/GSVD, KPCA+
LDA [7], and KRDA [8] two large sample size (LSS) data-
bases Isolet and MUSK are used. The databases are summa-
rized in Table 1. All the algorithms are simulated in Matlab
and the nearest neighbor classifier is used for classification
throughout the experiments. The simulation environment is a
Pentium-4 PC with a 2.8GH CPU and 1GB RAM running on
a WinXP OS.
The simulation results of the linear algorithms on the small

sample size databases are shown in Table 2. It can be seen that
as expected LDA/GSVD works well on documents classifica-
tions (Dataset1 and Dataset2), but it is very computationally
expensive and it fails to handle YALE and AR due to memory
overflow. The recognition accuracies of the other two algo-
rithms are not as high as that of the proposed algorithm even
though they can handle all the four cases, too.
For the kernelized algorithm comparison, two different

kernel functions are employed in the simulations. One is the
RBF kernel, k(xl, xh) = exp

(
− ||xl−xh||2

σ

)
, where || · || de-

notes the Euclidean 2-norm and σ > 0, and the nonhomoge-
neous polynomial kernel, k(xl, xh) =

(〈xl, xh〉+1
)d, where

d is a positive integer. For both of the kernel functions, the
parameter d and σ were optimized for each of the algorithms
during the training process such that the highest recognition
accuracy for that algorithm was obtained.
The simulation results of the kernelized algorithms on the

two large samples size (LSS) databases are shown in Table 3.
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Table 2. Recognition rate (%) and execution time (seconds) of linear algorithms with small sample size databases
Database YALE AR Dataset1 Dataset2
Linear Algorithm Recog. Exe. Recog. Exe. Recog. Exe. Recog. Exe.

Rate Time Rate Time Rate Time Rate Time
mGSVD-KDA(linear kernel mapping) 94.1 0.2 94.2 0.54 92.7 0.10 83.6 0.36
LDA/GSVD memory overflow memory overflow 92.7 19.45 83.4 6.31
RDA 91.6 0.19 91.1 0.79 83.5 0.12 81.3 0.34
PCA+LDA 91.6 0.19 90.5 0.58 85.3 0.16 81.2 0.54

In order to show the performance improvement of the kernel-
ized algorithms over the traditional LDA algorithm, the simu-
lation results of the traditional LDA algorithm are also shown
in the table. It can be seen that all the kernelized algorithms
substantially outperform the LDA in terms of recognition ac-
curacy. It can also be seen that the proposed algorithm con-
sistently outperformed all the other kernelized algorithms in
terms of recognition accuracy for both of the kernel functions
and for both of the databases.

5. CONCLUSION

The conventional GSVD framework has been modified and
integrated with LDA leading to a new kernelized discriminant
algorithm, the mGSVD-KDA algorithm. The proposed algo-
rithm successfully overcomes the computational complexity
problem of the LDA/GSVD algorithm in case of small sam-
ple size and high dimensionality and can capture the nonlin-
ear pattern distribution. The main ideas of the new algorithm
are that a nonlinear mapping is applied to transform the orig-
inal input space to a higher dimensional feature space and a
modified GSVD is conducted in that space, and that the cal-
culation of the large-dimension singular vectors of SVD is
circumvented without losing any discrimination information.
The new algorithm with a linear kernel mapping has been
demonstrated to deal effectively with the problem of high di-
mensionality of patterns, where the LDA/GSVD completely
fails, and has competitive recognition accuracy as that of the
LDA/GSVD algorithm. It has been shown that the proposed
algorithm with nonlinear kernel mapping provides a recogni-
tion accuracy higher than that provided by some other existing
kernelized algorithms.

6. REFERENCES

[1] J. H. Friedman, “Regularized discriminant analysis,” J.
Am. Statistical Associate, vol. 84, no. 405, pp. 957-964,
1989.

[2] P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman,
“Eigenfaces versus Fisherfaces: Recognition using class
specific linear projection,” IEEE Trans. on Pattern Analy-
sis and Machine Intelligence, vol. 19, no. 7, pp. 711-720,
Jul. 1997.

[3] J. Ye, R. Janardan, C. H. Park, and Haesun Park, “An
optimization criterion for generalized discriminant analy-
sis on undersampled problems,” IEEE Trans. on Pattern
Analysis and Machine Intelligence, vol. 26, no. 8, pp.
982-994, Aug. 2004.

[4] C. C. Paige and M. A. Saunders, “Towards a Generalized
Singular Value Decomposition,” SIAM Journal on Nu-
merical Analysis, vol. 18, no. 3, pp. 398-405, Jun. 1981.

[5] J. S. Taylor and N. Cristianini, Kernel methods for pattern
analysis. Cambridge University Press, 2004.

[6] G. Baudat and F. Fanouar, “Generalized discriminant
analysis using a kernel approach,” Neural Computation,
vol. 12, pp. 2385-2404, 2000.

[7] J. Yang, A. F. Frangi, J. Yang, D. Zhang, and Z, Jin,
“KPCA plus LDA: A complete kernel fisher discrimi-
nant framework for feature extraction and recognition,”
IEEE Trans. on Pattern Analysis and Machine Intelli-
gence,, vol. 27, no.2, Feb. 2005.

[8] J. Lu, K.N. Plataniotis, A.N. Venetsanopoulos, and
J, Wang, “An efficient kernel discriminant analysis
method,” Pattern Recognit., vol. 38, no. 10, pp. 1788-
1790, Oct. 2005

[9] C. H. Park and H. Park, “Nonlinear discriminant analysis
using kernel functions and the generalized singular value
decomposition,” SIAM Journal on Matrix Analysis and
Applications, vol. 27, no. 1, pp. 87-102, 2006.

1356


