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ABSTRACT 
This paper presents a hierarchical lane detection system 

with the ability to deal with both structured and unstructured 
roads. The proposed system classifies the environment first 
before applying suitable algorithms for different types of 
roads. For environment classification, pixels with lane-
marking colors are extracted as feature points. Eigenvalue 
Decomposition Regularized Discriminant Analysis is 
utilized in model selection and maximum likelihood 
estimation of Gaussian parameters in high dimensional 
feature space. For structured roads, the extracted feature 
points are reused for lane detection. For unstructured roads, 
mean-shift segmentation is applied to divide the scene into 
regions. Possible road boundary candidates are selected, and 
Bayes rule is used to choose the most probable boundary 
pairs. The experimental results show that the system is able 
to robustly find the boundaries of the lanes on different 
types of roads and various weather conditions. 

Index Terms— Intelligent systems, Video Analysis, Lane 
Detection, Machine Vision 

1. INTRODUCTION 
Lane detection is a crucial element for developing 
intelligent vehicles in Advanced Vehicle Control and Safety 
Systems (AVCSS). Lane boundaries have to be determined 
accurately in order to warn drivers of lane departure or 
impending collisions. Lane detection based on machine 
vision is accomplished by taking images from cameras 
mounted on the intelligent vehicles. The challenges of lane 
detection include the ability to deal with various road types, 
obstacles, passing traffic, shadows, and achieving real-time 
requirement at the same time. In current literature, 
researchers often use different strategies to deal with 
various road types. Edge or intensity based methods [1] are 
commonly used for structured roads with obvious lane 
markings because lane markings have clear edges and 
relatively high intensities. For unstructured roads which 
have no obvious lane markings or lane boundaries, color 
and texture information are often employed to distinguish 
the road surface from the surroundings under the 

assumption that the color or texture of the road surface is 
very different from the surroundings beside the road [2]. 

Figure 1. Hierarchical lane detection framework. 

An algorithm that performs well on structured roads 
could work poorly on unstructured roads, whereas an 
algorithm suitable for handling rural roads might not be 
suitable for handling highways. More specifically, edge or 
intensity based methods will fail on unstructured roads due 
to lack of obvious edges or markings with bright intensities. 
On the other hand, the assumption for color or texture based 
methods does not hold for highways because the color and 
texture of one lane does not have much difference from the 
lane right next to it. Therefore, the lane boundaries cannot 
be decided in this way. In this paper, we propose a 
hierarchical lane detection framework, which is illustrated 
in Figure 1. The key idea is to classify the current 
environment into two main categories, structured roads and 
unstructured roads, automatically and efficiently. Once the 
classification is done, the system can assign the method that 
is suitable for the current environment to perform lane 
detection. We present the environment classification 
mechanism in Section 2. Lane detection algorithms for 
structured roads and unstructured roads are described in 
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Section 3. Experimental results are shown and discussed in 
Section 4. Finally, we make conclusions in Section 5.  

2. ENVIRONMENT CLASSIFICATION 

To distinguish structured roads and unstructured roads, 
feature points are extracted from the scene for classification 
purpose. Since high dimensional feature vector is formed 
with extracted feature points, we employ regularization 
techniques to reduce the misclassification rate. The feature 
point extraction procedure is explained in sub-section 2.1. 
Afterwards, model selection, training, and classification 
mechanisms applied in our work are elaborated in sub-
section 2.2. 

2.1. Feature Point Extraction 
The most distinguishable characteristic between structured 
roads and unstructured roads is the existence of lane 
markings. Therefore, we extract the points with the colors of 
lane markings as the feature points. That is, we define 
feature colors as colors of lane markings, which can be 
white, yellow or red. The feature color extraction procedure 
is based on the color analysis part in our previous work [3]. 
In order to deal with feature colors in various kinds of 
illumination conditions, we analyze road colors before 
feature colors are extracted and enforce the constraint that 
the detected feature colors should have relatively higher 
intensities compared to the average intensity of the road 
surface in the same image frame. Afterwards, a multi-
variable Gaussian is employed to represent each of the three 
main classes of feature colors. The feature extraction 
procedure will extract lane markings on structured roads. 
However, it will extract arbitrary clutter regions from 
unstructured roads. Therefore, by analyzing the feature 
points we get, we can distinguish these two types of roads. 

2.2. Applying EDRDA for Environment Classification 
Connected component is performed on the feature points to 
obtain feature objects. For each feature object with size 
larger than a threshold, a feature vector is constructed. The 
feature vector of a feature object includes the x-y 
coordinates of the center point, the average RGB values, the 
maximum RGB values, the minimum RGB values, 
orientation, shape descriptor, width and aspect ratio of the 
feature object.  

Linear Discriminant Analysis (LDA) and Quadratic 
Discriminant Analysis (QDA) [4] are two very popular 
parametric classification techniques. In LDA and QDA, the 
class conditional densities are modeled as Gaussians. To 
model class conditional densities as Gaussians, we need to 
estimate the parameters of the Gaussians from the training 
data. LDA and QDA can perform very well if the 
parameters are estimated accurately. However, when the 
dimension of the feature space is high and the number of 
training samples is small compared to the number of 

parameters to be estimated, the covariance matrices 
estimates can become highly variable. For high dimensional 
data, LDA or QDA often become ill or poorly posed and the 
misclassification rate will go up dramatically. Therefore, 
regularization becomes an important issue. The objective of 
regularization is to reduce variance without adding too 
much model bias when performing classification.  

Friedman [5] proposed a regularization technique, 
Regularized Discriminant Analysis (RDA), to reduce the 
variance of the model while introducing little extra bias. 
However, the selection of the model parameters is not 
straight-forward and there is no clear interpretation of the 
model being selected. Bensmail [6] proposes an alternative 
approach, Eigenvalue Decomposition Regularized 
Discriminant Analysis (EDRDA), to design regularized 
classification rules in the Gaussian framework to obtain 
easier interpreted Gaussian discriminant models and further 
reduce misclassification rate. The covariance matrix 

k
 for 

the kth class is re-parameterized in terms of its eigenvalue 
decomposition T

kkkkk DAD , where p

kk

/1 ,
kD  is 

the matrix of eigenvectors of 
k

.
kA  is a diagonal matrix 

such that 1kA  with the normalized eigenvalues of 
k

 on 
the diagonal in a decreasing order. By allowing some of the 
parameters 

kkk DA ,,  to vary between classes, (i.e., each 
parameter can be either the same or different among 
different classes), eight discriminant models can be obtained. 
Furthermore, six more models are obtained by modeling the 
covariance matrix as a diagonal matrix or a scalar multiple 
of the identity matrix. In total, fourteen models are 
considered by EDRDA. For each model, the maximum 
likelihood (M.L.) estimation of the covariance matrix for 
each class can be computed either in closed form formula or 
requires iterative procedure. The M.L. estimation equations 
of the parameters are listed in [6]. 

At training phases, we perform supervised learning 
and manually classify the feature objects as left-lane-
marking objects (LLM), right-lane-marking objects (RLM), 
and none-lane-marking objects (NLM). The feature vectors 
of these objects serve as the training samples for parameter 
estimation and model selection. The M.L. parameters of the 
EDRDA models are computed from the training samples. 
To accelerate the model selection process, only the nine 
EDRDA models that have closed-form formulas are 
considered here. Among these EDRDA models, three 
models with the minimum misclassification rates are 
selected by cross validation, and their corresponding 
estimated parameters are used in the classification stage. 

At the classification phase, a voting mechanism is 
utilized to determine the final classification result. The top-
three selected EDRDA models are used to perform 
discriminant analysis on each object. Let niL denote the 
number of feature objects classified as LLM with parameter 
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set Pi; niR and niN are similarly defined. The number of votes 
for structured road and unstructured road are 

3

1i
iRiiListructure nwnwvote , 3

1i
iNieunstructur nwvote .   (1) 

where w1, w2, and w3 are weights given to models M1, M2,
and M3, respectively. The image scene is classified as 
structured road environment if 

structurevote  is larger than 

eunstructurvote  or a threshold.   

3. LANE DETECTION 

We present the lane detection procedures in the following 
two subsections. 

3.1. Lane Detection for Structured Roads 
Since the extracted feature points correspond to lane 
markings for structured roads, we can utilize these feature 
points to detect lane boundaries in the subsequent lane 
detection modules. However, the extracted feature objects 
include both real lane markings and objects that have 
similar colors as the lane markings on the road surface. 
These objects that interfere with lane detection are mainly 
moving vehicles in the traffic scene. Therefore, to make 
sure that the lane boundaries can be accurately detected, we 
need to reduce the influence of these moving vehicles. 
Taking advantage of the fact that the moving vehicles have 
different appearances and moving patterns from lane 
markings on the road surface, the moving vehicle 
elimination procedure utilizes size, shape, and motion 
information to distinguish real lane markings from vehicles 
that have similar colors as the lane markings. Lane 
recognition module selects the lane boundaries by 
considering initial angles of inclination and starting points 
of the lane boundaries first and then search for the turning 
points for the entire curved lane boundaries. The details 
could be found in [3].  

3.2. Lane Detection for Unstructured Roads 
For unstructured roads that do not have obvious lane 
markings, mean-shift segmentation [7] is employed to 
divide the entire scene into regions. We assume that road 
surface and the surroundings beside the road have different 
colors and texture and therefore will be divided into 
different regions after segmentation. We also assume that 
road surfaces belong to relatively homogenous regions. 
Road boundaries are included in the region boundaries since 
the road surface and the surroundings belong to different 
regions after segmentation. Region boundaries are traced by 
constructing a tree structure and then smoothed to form 
possible road boundary candidates. We compute the 
posterior probability that the ith candidate is the left 
boundary and the jth candidate is the right boundary given 
the current segmented image frame using Bayes rule. 

)(
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)|,(
Seg

Seg
Seg IP

jRiLPjRiLIP
IjRiLP              (2) 

)( SegIP  is constant for every candidate pair and therefore 

could be ignored. The prior ),( jRiLP  is computed by 
considering the starting points and ending points of the 
candidate pair. If the starting points and the ending points of 
a candidate pair are impossible to form legitimate road 
boundaries, the corresponding prior ),( jRiLP  is set to 
be zero.  For other candidate pairs that have non-zero priors, 
we set ),( jRiLP  according to 
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where 
iS ,

iE ,
jS , and 

jE  denote the starting point and 
ending point of the ith candidate and the jth candidate 
respectively. 1k

LS  and 1k
LE  denote the updated starting point 

and ending point of the left road boundary up to time k-1.
1k

RS  and 1k
RE  are similarly defined for the right road 

boundary. A candidate pair has a larger prior if the starting 
points and the ending points are closer to the previous 
detection results. For all candidate pairs, the priors are 
normalized. The likelihood ),|( jRiLIP Seg

 is modeled 

by Gaussian function using the homogeneity of the region 
RH  between the candidate pairs.  

)2/()1( 22

),|( HRH
Seg ejRiLIP   (4) 

We select the most probable boundary pairs that maximize 
)|,( SegIjRiLP  from the candidate boundaries. 

4. EXPERIMENTAL RESULTS 
In order to verify the effectiveness of the proposed method, 
we conducted experiments with 12 videos, including both 
structured-road and unstructured-road environments. The 
frame rate of the videos is 25 frames per second. In the 
training and model selection procedure, total 520 feature 
objects are used as training samples, including 120 LLM 
feature objects, 100 RLM feature objects, and 300 NLM 
feature objects. Figure 2 and Figure 3 display the feature 
points extracted from structured and unstructured-road 
scenes, respectively. When performing classification, we 
take a test sample every 10 frames from each video. There 
are total 5370 frames being classified and only 86 of them 
are misclassified. Note that the misclassified frames are few 
enough that the appropriate lane detection algorithm can be 
selected for each video. For example, we switch from 
structured lane detection algorithm to unstructured lane 
detection algorithm only after 10 consecutive frames are 
classified as unstructured-road environment, and vice versa.  

    

Figure 2. Feature points for structured roads. 
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Figure 3. Feature points for unstructured roads. 

(a) (b) (c)

(d) (e) (f) 
Figure 4. Lane detection process for unstructured roads. 

Figure 5. Lane detection results. 

Figure 4 displays an example of the intermediate result after 
each step in the unstructured lane detection process. Figure 
4 (a) is the original image frame; Figure 4 (b) is the mean-
shift segmentation result; Figure 4 (c) shows the region 
boundaries; Figure 4 (d) displays the boundaries that are 
below the vanishing line after region merging and 
skeletonization; Figure 4 (e) shows the collection of the 
smoothed candidate boundaries; finally, Figure 4 (f) shows 
the most probable road boundaries. Selected lane detection 
results for structured and unstructured roads are displayed in 
Figure 5. The proposed system reaches an overall accuracy 
rate of 97.39%. The lane detection accuracy is computed 
based on the number of frames in which the lane boundaries 
are successfully detected, which is counted manually.  

5. CONCLUSIONS 
In order to be able to achieve high accuracy in lane 
detection with both structured and unstructured roads, we 

design a hierarchical lane detection system. Rather than 
trying to deal with all situations with one complicated 
algorithm, we classify the environment first before applying 
appropriate algorithms for different types of roads. In this 
way we are able achieve high accuracy with simple and 
efficient lane detection algorithms. For environment 
classification, pixels with lane-marking colors are extracted 
as feature points. Since the feature vectors are of high 
dimension, EDRDA is utilized in model selection and 
maximum likelihood estimation of Gaussian parameters. For 
structured roads, we utilize lane-marking color information 
and perform angle of inclination and turning point searching 
after moving vehicle elimination procedure. For 
unstructured roads, mean-shift segmentation is applied to 
divide the scene into regions. Possible road boundary 
candidates are selected from the region boundaries. 
Afterwards, Bayes rule is used to choose the most probable 
boundary pairs from the candidate boundaries. The 
proposed system is able to robustly find the boundaries of 
the lane in various weather conditions and is not affected by 
the passing traffic. When the vehicle switches from one type 
of road to another, the environment classification result will 
indicate that a different algorithm should be used and 
therefore the accuracy will not be deteriorated. 
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