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ABSTRACT

Dimensionality reduction (DR) is a major issue to improve

the efficiency of the classifiers in Hyperspectral images (HSI).

Recently, the independent component analysis (ICA) ap-

proach to DR has been investigated. But, this signal proces-

sing is applied on vectorized images, losing spatial rearrange-

ment. To jointly take advantage of the spatial and spectral in-

formation, HSI has been recently represented as tensor. Offe-

ring multiple ways to decompose data orthogonally, we deve-

lop a new DR method based on multilinear algebra tools and

on ICA. The DR is performed on spectral way using ICA
jointly to an orthogonal projection onto a lower subspace di-

mension of the spatial ways. We show the Maximum Likeli-

hood classifier improvement using the proposed method.

Index Terms— Dimensionality reduction, independent

component analysis, multilinear algebra tools, tensor proces-

sing.

1. INTRODUCTION

The emergence of hyperspectral images (HSI) implies the

exploration and the collection of a huge amount of data. Ima-

ging sensors provide typically up to several hundreds of spec-

tral bands. This unreasonably large dimension not only in-

creases computational complexity but also degrades classifi-

cation accuracy [1]. Dimensionality reduction (DR) is often

employed. Due to its simplicity and ease of use, the most po-

pular DR method is the PCA, referred to as PCAdr. A re-

finement of PCAdr is the independent component analysis

(ICA), referred to as ICAdr [2]. While PCAdr maximizes

the amount of data variance by orthogonal projection, ICAdr

uses higher order statistics. But these matrix algebra methods

requires a preliminary step which consists in vectorizing the

images. Therefore, they rely on spectral properties only, ne-

glecting to the spatial rearrangement.

To overcome this weakness, [3] recently introduced a new

HSI representation based on tensor in DR context. This re-

presentation involves a powerful mathematical framework for

analyzing jointly the spatial and spectral structure of data.

[3] proposes an multilinear algebra-based method yielding

a multi-way decorrelation. Joint spatial-spectral processing

is performed : p spectral components are extracted using

PCAdr, jointly with a lower spatial rank-(K1,K2) approxi-

mation. The latter spatial processing yields a projection onto

a lower dimensional subspace that permits to spatially whiten

data. Referred to as lower rank-(K1,K2, p) tensor approxima-

tion based DR method (LRTAdr-(K1,K2, p)), [3] has shown

the classification efficiency improvement compared to when

PCAdr is used.

In this paper, we proposed a multilinear algebra tool when

ICAdr is considered for the extraction of the p spectral com-

ponents. We show that the spatial decorrelation joint to spec-

tral dimension reduction based on ICAdr improves the clas-

sification efficiency compared to those obtained when ICAdr

is used. The proposed method is referred to as hybrid LRTA-

ICAdr-(K1,K2, p).

Section 2 introduces the ICAdr method for HSI. Then

in Section 3, the tensor representation and the LRTAdr-

(K1,K2, p) is briefly reviewed before outlying the propo-

sed hybrid LRTA-ICAdr-(K1,K2, p) in Section 4. Section 5

presents comparative classification result.

2. INDEPENDENT COMPONENT ANALYSIS FOR
DR, ICADR

ICA [4] is an unsupervised source separation process,

that has been applied to linear blind separation problem [5].

Its application to linear mixture analysis for HSI has been

found in [6]. ICA assumes that data are linearly mixed and

separates them into a set of statistically independent compo-

nents (ICs). Since ICA requires higher-orders, many subtle

materials or rare targets are more easily characterized.

To apply this signal processing, the HSI data are conside-

red as a sampling of spectrum. Suppose that I3 is the number

of spectral bands and I1 × I2 is the size of each spectral band

image. Each image pixel vector is an I3-dimensional random

variable. Those pixel vectors, referred to as spectral signa-

tures, are concatenated to yield a matrix R = [r1 r2 · · · rI3]

of size I3 × I1I2. In other words, the ith row in R is speci-

fied by the ith spectral band. Commonly, each vector pixel is

considered as a linear mixture of a set of p known endmem-

bers, as follows :

r = Ms, (1)

where M is an I3 × p target signature matrix where mj is the

jth target signature and p the number of target in the image,

and s=[s1 s2 · · · sp]T is the abundance column vector. ICA
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finds a p × I3 separating matrix W to generate p ICs (with

p < I3) such that :

yIC = Wr, (2)

where, yIC is a p-dimensional vector. To generate p ICs, fas-
tica algorithm is selected using the absolute value of kurtosis

as a measure of nongaussianity. Commonly a pre-processing

step consists in performing a PCA to sphere and reduce the

samples. ICA is applied on a p × I1I2 matrix YPC :

YPC = D−1/2UT R, (3)

where D is an eigenvalue matrix and U an eigenvector matrix.

3. REVIEW ON TENSOR REPRESENTATION AND
ON LRTADR-(K1,K2, P )

The ICAdr and the PCAdr extracted p components using

only spectral information. Recently, [3] overcomes this draw-

back when PCAdr is considered. This proposed method was

referred to as the lower rank-(K1,K2, p) tensor approxima-

tion DR-based method, LRTAdr-(K1, K2, p). Based on ten-

sor representation, it keeps the initial spatial structure and in-

sures the neighborhood effects. The whole HSI is conside-

red as a third-order tensor, the entries of which are accessed

via three indices. It is denoted by R ∈ R
I1×I2×I3 , with ele-

ments arranged as ri1i2i3 , i1 = 1, . . . , I1; i2 = 1, . . . , I2;
i3 = 1, . . . , I3 and R is the real manifold. Each index is cal-

led mode : two spatial and one spectral modes characterize

the HSI tensor. The interest of tensor modelling is the ma-

thematically founded multilinear algebraic tools studying the

properties of data tensor R in a given n-mode. Let us define

E(n), the n-mode vector space of dimension In. The n-mode

flattened matrix Rn of tensor R ∈ R
I1×I2×I3 is defined as

a matrix from R
In×Mn , with : Mn = IqIr, with q, r �= n.

Rn columns are In-dimensional vectors obtained from R by

varying the index in and keeping the other indices fixed.

In tensor formulation [7], the obtained matrix R (section

2) is equivalent to the 3-mode flattened matrix of R. Then, the

PCAdr, defined in Eq. (3), is applied on the 3-mode flattened

R3. We write this statement, in tensor formula, as follows :

YPC = R×3 D−1/2U(3)T , (4)

where YPC ∈ R
I1×I2×p is a three-order tensor holding the

p principal components (PCs). With U(3) being the orthogo-

nal 3-mode matrix holding the p eigenvectors of the flattened

matrix R3. ×n is the n-mode product [7, 8] generalizing the

product between a tensor and a matrix along an n-mode.

Eq. (4) is equivalent to Eq. (3) including the image resha-

ping and highlights the spectral or 3-mode processing in the

traditional DR method. The proposed tensor-based DR me-

thod has two objectives. First, estimate the matrix U(3) in Eq.

(4) (denoted by U in Eq. (3)) using spatial information. Se-

condly, make a joint spatial-spectral processing with the aim

of whitening the spatial and spectral modes.

Indeed, any three-order tensor R can be decomposed fol-

lowing the Tucker3 tensor decomposition [8] as :

R = C ×1 U(1) ×2 U(2) ×3 U(3) (5)

where U(n) is the orthogonal n-mode matrix holding the Kn

eigenvectors associated with the Kn largest eigenvalues of the

flattened matrix Rn, C ∈ R
I1×I2×I3 .

The purpose is to find the lower rank-(K1, K2, p) tensor

Y , with Kn < In, n = 1, 2, and p < I3, which minimizes the

following quadratic Frobenius norm :

‖R − Y‖2
F . (6)

The three-order tensor Y holds p principal components (PC)
extracted (p < I3) which are spatially approximated. Fin-
ding the lower rank approximation consist in estimating the

U(n) orthogonal matrix. And [7] shows that minimizing Eq.
(6) with respect to Y amount to maximize with respect to Un

matrix the quadratic function :

g (U1,U2,U3) =
∥∥∥R×1 U(1)T ×2 U(2)T ×3 U(3)T

∥∥∥
2

. (7)

The least square solution involves the LRTAdr-(K1, K2, p)

expression [3] :

YPC = R×1 P(1) ×2 P(2) ×3 D−1/2U(3)T
1···p , (8)

where P(n) = U(n)
1···Kn

U(n)T

1···Kn
, n = 1, 2, and D, U(3)

1···p are

the eigenvalue matrix and the corresponding first p eigen-

vectors of the 3-mode flattened of R respectively. U(n) is

achieved using an alternating least squares (ALS) algorithm

convergence [7] guaranteed the cross-dependency of the spec-

tral and spatial processing. [3] shows the classification effi-

ciency improvement when the LRTAdr-(K1,K2, p) is used

that includes a joint spatial and spectral whitening.

4. THE PROPOSED MULTILINEAR ALGEBRA AND
ICA-BASED METHOD

In this paper, we pursue this previous work by adapting it

for ICAdr approach. As a result, in tensor formula, Eq. (2)

including the image reshaping is equivalent to :

YIC = R×3 W, (9)

where, YIC is a three-order tensor ∈ R
I1×I2×p holding the p

ICs. Considering that the ICs are extracted from the whitened

and reduced data, two solutions are developed. The first pro-

position considers the LRTAdr prior to the ICAdr and the

second one considers an hybrid LRTA-ICAdr-(K1,K2, p)
approach to DR.

• LRTAdr-(K1,K2, p) prior to ICAdr.

We propose to substitute the spectral whitening preproces-

sing (Eq. 3) by the LRTAdr-(K1,K2, p) (Eq. 4). As a result,

ICAdr is applied on a spatial/spectral whitened data rather
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than spectral whitened only. With the guarantee that the U(1),

U(2) and U(3) orthogonal matrix are cross-dependent using

ALS algorithm. We summarize this corresponding algorithm

as follows :

1.Initialization: k = 0, ∀ n = 1, 2, 3
U(n),0contains the first Kn eigenvectors
of the flattened matrix Rn.

2. ALS loop: until convergence of Eq.(7)
∀ n = 1, 2, 3
a.R̂k = R×q U(q),kT ×r U(r),kT

with q,r �=n.
b.R̂k

nR̂kT

n eigenvalue decomposition
c.U(n),k+1 holds the Kn first eigenvectors
d.P(n),k+1 = U(n),k+1U(n),k+1T

3. Lower rank approximation and reduction
YPC = R×1P(1),ks×2P(2),ks×3D−1/2U(3),ksT

Eq.(8)
ks : final iteration

4. ICs extraction
a.W estimated using fastica from R̂ks

b.YIC = R̂ks ×3 W

But in the latter method, the W demixing matrix estimation

does not take advantage of the spatial information. The se-

cond proposition makes jointly the spatial decorrelation and

the ICAdr-based spectral reduction.

• Hybrid LRTA-ICAdr-(K1,K2, p).
In this proposition, the orthogonal matrix U(1), U(2), U(3)

and the demixing matrix W are jointly estimated and cross-

dependent using the ALS algorithm. This statement is written,

from Eqs.(8) and (9) as :

YIC = R×1 P(1) ×2 P(2) ×3 W. (10)

We summarize this corresponding algorithm as follows :

1.Initialization: k = 0, ∀ n = 1, 2, 3
U(n),0 holds the first Kn eigenvectors
of the flattened matrix Rn.

2.ALS loop: until convergence of Eq.(7)
i.for n = 1, 2
a.R̂k = R×q U(q),kT ×3 Wk with q �=n.
b.R̂k

nR̂kT

n eigenvalue decomposition
c.U(n),k+1 holds the Kn first eigenvectors
d.P(n),k+1 = U(n),k+1U(n),k+1T

ii.for n = 3
a.R̂k = R×1 U(1),kT ×2 U(2),kT

b.R̂k
nR̂kT

n eigenvalue decomposition

c.R̂k = R̂ ×3 U(3),kT

d.W estimated using fastica from R̂k

3.hybrid spatial lower rank/ICA reduction
YIC = R×1 P(1),ks ×2 P(2),ks ×3 Wks Eq.(10)
ks : final iteration

The next section shows the advantage of using multilinear al-

gebra for DR on the classification result.

a) b)

Fig. 1. a) Classes in the HYDICE image, b) ground truth.

Table 1. Information classes and samples

Classes Training samples Test samples Color

field 1 002 40 811 green 1

trees 1 367 5 537 green 2

road 139 3 226 white

shadow 372 5 036 pink

target 1 128 519 red

target 2 78 285 blue

target 3 37 223 yellow

5. EXPERIMENTS

Real-world data collected by HYDICE imaging are consi-

dered for this investigation with a 1.5 m spatial and 10

nm spectral resolution. Including 148 spectral bands (from

435 to 2326 nm), 310 rows and 220 columns, this HSI

can be represented as a three-order tensor, referred to as

R ∈R
310×220×148. Figure 1 shows the entire scene. The land

cover classes are : field, trees, road, shadow and 3 different

targets. The resulting number of training and testing pixels

for the seven classes are given on Table 1. Classification is

performed using the Maximum Likelihood algorithm.

For sake of clarity, the (K1,K2)-values are empirically set

to 150, for all experiments from this real-world images.

The first experiment compares the classification result ob-

tained after ICA-based DR methods introduced in this paper.

Figure 2 shows the visual classification result when ICAdr is

used, when LRTAdr is applied prior to ICAdr and when the

hybrid LRTA-ICAdr-(K1,K2, p) is considered. It permits

to visually appreciate the ICA-based DR usefulness. The hy-

brid LRTA-ICAdr-(K1,K2, p) yields more homogeneous

classes with mean area corresponding to the background and

the target more identifiable with less unclassified pixels. This

tendency is confirmed in Fig. 3 which shows the overall clas-

sification evolution with respect to the number of retained

ICs. For all p-values our DR method exhibits better classifica-

tion result, more significantly in comparison to those obtained

when LRTAdr is applied prior to ICAdr. The joint estima-

tion of the spatial projectors (P(n)) and the demixing matrix
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a) OA = 78.88 b) OA = 96.21

c) OA= 97.01 d) OA=98

Fig. 2. Classification obtained when a) ICAdr is used, b)

LRTAdr is used before ICAdr c) hybrid LRTA-ICAdr-

(150, 150, 20) is considered.

(W) seems to have interesting impact on classification.

The second experiment illustrates the ALS convergence

of the hybrid LRTA-ICAdr-(150, 150, 20) algorithm, when

20 ICs are retained. Figure 4 shows that the fitting of the or-

thogonal matrix U(n), and the demixing matrix W iteratively

improves the classification efficiency until 5 iterations for this

real-world data.

6. CONCLUSION

In this paper, we have introduced a new multilinear alge-

bra and ICA based DR method, referred to as hybrid LRTA-

ICAdr-(K1, K2, p). This method makes jointly an ICAdr-

based spectral reduction and a spatial decorrelation. As a re-

sult, the p ICs are projected into a lower (K1, K2)-dimensional

space. The cross-dependence of the spatial projection ma-

trix and the demixing matrix is guaranteed using an alter-

nating least squares algorithm. Experiments from real-world

HYDICE show the classification improvement when our pro-

posed method is used.
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