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ABSTRACT

In this paper we report a new set of rotation invariant features for tex-
ture classification. The proposed feature set is based on principles of
image approximation using multiresolution (MR) frame decompo-
sitions. Features are obtained from sequential approximation error
curves (SAECs) obtained from the reconstruction error of texture
approximations. These approximations are formed by the sequential
addition of frame coefficients in decreasing magnitude order. Fea-
ture selection consist of taking points along the SAEC. It is found
that SAECs are oblivious to rotation, allowing the generation of ro-
tationally blind feature sets. Hence, the computational complexity of
classification systems is reduced by eliminating the need for feature
post-processing (e.g., DFT-encoding) to achieve rotation invariance
(RI). We test the rotationally-blind feature sets for texture classifi-
cation using different MR frame decompositions and data sets. We
show that the proposed SAEC-based feature set achieve classifica-
tion rates competitive with other schemes using a smaller feature
set.

Index Terms— Rotation invariance, texture, frames, directional
filter bank

1. INTRODUCTION

Texture is an inherent property of objects and scenes. It is considered
one of the key elements used by our visual system. Texture is one
of the descriptors established by the MPEG-7 standard for Content
Based Image Retrieval (CBIR) systems. From a digital image analy-
sis perspective, classification and segmentation algorithms based on
texture have been an important and prolific area of research over the
last decades.

The objective of texture analysis is to use texture to describe
the contents of an image using a compact set of features. An im-
portant problem in texture analysis is to find feature sets that are
compact and have strong discriminative properties that allow accu-
rate differentiation over many classes of textures. Additionally, it is
highly desirable to design feature sets that are robust to variations
in illumination, scale, perspective (e.g., stretching and skewing) and
orientation (e.g., rotation).

To achieve rotation invariance (RI) a few schemes have been
proposed over the years. One of the early approaches was the use of
circular auto-regressive (AR) models [1] and Gaussian-Markov ran-
dom fields (GMRFs) [2]. The combination of GMRFs with wavelets
was proposed by Porter and Canagarajah in [3]. Ojala, et al. [4] re-
ported RI feature sets using uniform Local Binary Patterns (LBPs).

Multichannel approaches are particularly well suited for RI tex-
ture analysis. Greenspan, et al., [5] used a Steerable Pyramid and
DFT-encoding to obtain RI energy-based features. Haley andManju-
nath [6] used an analytical Gabor representation to derive a complete
feature set based on frequency magnitude, phase, and autocorrela-
tions of the subband coefficients. Hill, et al., [7] used the dual-tree
complex wavelet transform (DT-CWT) with DFT-encoding. More
recently the use of the Bamberger Directional Filter Bank (BDFB)
and Bamberger Pyramids has been extensively studied for RI texture
classification [8].

In this paper we present a new set of RI features for texture
classification. The proposed scheme derives from the multichannel
paradigm. In our case, a texture is decomposed using multiresolution
(MR) frames. The novel methodology analyzes the evolution of the
reconstruction error obtained from texture approximations. These
approximations are formed by the sequential addition of frame coef-
ficients in decreasing magnitude order. We show that these features
provide good feature sets for classification with the additional prop-
erty of being blind to rotation distortions.

2. MEASURING TEXTURE FROMMULTIRESOLUTION
FRAMES

MR Frames are redundant signal representation which provide more
flexibility than MR bases like wavelets. In a recent tutorial paper
[9] the properties and advantages of frames for analysis tasks were
described in detail. Frames have been used for texture analysis for a
long time, where they are commonly known as multichannel decom-
positions [10, 11]. In general it has been found that frames outper-
form bases because they provide more stable channel statistics and
energy estimates.

In this paper we develop our initial results using a Bamberger
Pyramid which has been successfully applied in RI texture classifica-
tion [8]. More specifically, we use a Fully Undecimated Bamberger
Pyramid (FUBP), a highly redundant MR frame. Multichannel de-
compositions that split the frequency plane in directionally selective
channels can achieve RI using a DFT-encoding step [5, 7, 8]. In this
paradigm, a feature vector f = [ e1 e2 . . . eM ]T , is formed
for the set of directional subbands at each resolution. The feature set
consists of the energies ei for each channel. The �1 and �2 norms
have been employed as energy estimates. Next the DFT of the fea-
ture vector f is computed as F = Wf , whereW is the DFT matrix.
A rigid texture rotation is encoded in f as a circular shift which is
encoded in F as a complex exponential factor. Hence an RI fea-
ture vector is achieved by taking the magnitude of the firstM/2− 1
coefficients of F.
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A well known property of natural images is that they are com-
pressible or close to sparse under different representations like
wavelets, wavelet frames, FUBP, etc. This property implies that
most of the image information is captured on a set of K significant
coefficients such that K << N , where N is the total number of
coefficients in the decomposition. In Figure 1 a curve depicting re-
construction error vs. the number of reconstruction coefficients for
the Lena image. The FUBP is used as the image decomposition. The
coefficients are added sequentially to the reconstruction following a
descending magnitude order. As expected, the reconstruction error
drops to zero rapidly. For conciseness we identify these curves as
Sequential Approximation Error Curves (SAEC).
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Fig. 1. SAEC for Lena showing good compressibility properties.

Large coefficients capture the significant perceptual components
of an image like edges and low frequency detail. A natural question
to ask is if textures would exhibit compressible behavior. This would
be highly dependent on the texture statistical and structural proper-
ties. We evaluate texture compressibility by calculating the SAECs
for several textures from the Brodatz database using the FUBP as the
MR decomposition. We present the SAECs for d4 (pressed cork),
d29 (beach sand), d55 (straw mating), d103 (loose burlap) in Figure
2. We note that the curves have a fast decay initially, but at some
point a knee is reached making the decay to zero slower that in the
Lena image case. A possible explanation for the evolution of these
curves is that the overall structure of the structure is captured by a
small percentage of the significant coefficients (fast decay), and the
randomness and “feel” of the textures is captured by the majority
of the coefficients (slow decay). We conclude that textures are par-
tially compressible. It is also significant to note that SAECs vary
significantly among the textures.

Next, we perform a similar experiment using the USC database
of rotated textures [6]. The data set consists of 13 texture classes
rotated at seven different angles. We are interested on evaluating
the effect of rotation on the SAECs for a given texture. We calcu-
lated the SAECs for each 640 × 640 texture. We show the curves
for the brick texture rotated at 0, 60 and 120 degrees in Figure 3.
Surprisingly, the SAECs are invariant to rotation. This behavior was
observed for all 13 texture classes over all angles. This suggests that
frame coefficients steer the texture information proportionally to the
rotation angle across orientations and scales in such away that the
energy of sequential reconstructions is invariant to rotations.
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Fig. 2. Comparison of approximation error as a function of coeffi-
cients used in the reconstruction for different Brodatz textures.

3. ROTATIONALLY BLIND TEXTURE FEATURES

Considering the more specific problem of texture classification,
SAECs provide information on the structural and statistical content
of the texture as a function of reconstruction error. The curves show
strong variations in their shapes for different textures but remain in-
variant to rotation. In fact, we could say that SAECs are oblivious or
blind to texture rotation. A set of rotationally blind features has the
advantage of removing any post-processing steps needed to achieve
RI. For multichannel schemes this could be the DFT-encoding step
or other more computationally expensive methods [6].

We propose to form a feature set by taking points along SAECs.
A computational drawback is that we would need to do a large num-
ber of reconstructions as a function of the total number of coeffi-
cients. To reduce computation requirements of SAECs the following
simplifications are proposed. First, a sequential thresholding scheme
is used where the SAEC is evaluated over a small set of points. Sec-
ond, the approximation errors can calculated in the frame domain
avoiding the calculation of the inverse frame transform. An algo-
rithm for SAEC computation is presented in Figure 4.

Some points about the algorithm follow. The matrix Φ repre-
sents a general MR transform. The sequence of thresholds is gen-
erated as a function of the maximum magnitude coefficient M , and
a scaling factor α where 0 < α < 1. The function ΘT (·) imple-
ments a hard thresholding function with threshold T . The expression
‖ Ȳ ‖0 denotes the �0 norm of Ȳ (number of non-zero coefficients).

The algorithm returns the SAEC information in the arrays e[i]
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Fig. 3. l0 norm plots for 3 textures at different angles to show fea-
tures are rotation invariant
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1: Input: X � sample texture
2: Output: e[i], l0[i]
3: Y = Φ

T
X � image transformation

4: M = max(|Y|)
5: α = 0.95
6: i = 0
7: while α > 0 do
8: T = αM
9: Ȳ = ΘT (Y)

10: e[i] = ‖Y−Ȳ‖2
L

11: l0[i] =‖ Ȳ ‖0
12: α = α− 0.05
13: i = i + 1
14: end while

Fig. 4. Algorithm for SAEC calculation

and l0[i]. In this case, 19 points are produced for each array. In
order to make the SAECs better suited for feature extraction, at this
time we consider only the error array e[i]. This allows us to align
all the error values over uniformly spaced points along the abscissa.
Figure 5 shows the SAECs produced by the algorithm for different
textures. As in the previous case, the plots show that SAECs vary
considerably from one texture class to another. Note that the abscissa
is given in term of 1− α.
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Fig. 5. SAECs for different Brodatz textures using the algorithm
from Figure 4. The plot shows reconstruction error vs. 1-α

4. TEXTURE CLASSIFICATION

In this section we evaluate the proposed feature set. In order to
compare our proposed features with other feature sets we choose
the Bayes distance classifier. This classifier has been a extensively
tested in texture classification [12, 10, 6, 13, 8]. The Bayes distance
is given by

dk(f) = (f−mk)TC−1

k
(f−mk) + log(det(Ck)) (1)

wheremk andCk correspond to the mean feature vector and covari-
ance matrix for the kth texture class. These parameters are obtained
using Maximum Likelihood estimates from training data. Classifi-
cation is performed by assigning test vector v to class k∗ according

to
k∗ = arg min

k

{dk(f)} (2)

for k = 1, 2, . . . , NK , whereNK is the number of texture classes in
our classification system.

To study the effect of different frame decompositions we present
results using the Fully-Undecimated Bamberger Pyramid (FUBP),
the Undecimated Discrete Wavelet Transform (UDWT) using the 9-
7 filters and three resolution levels, and the Steerable Pyramid (SP).
The FUBP and SP implement similar frequency plane partitioning
with four pyramid levels and eight directional bands on the two mid-
band pyramid levels. We note that the FUBP is fully redundant while
the SP has a lower redundancy factor.

We present three texture classification scenarios. First we test
the feature set without considering rotation. For our experiments we
use the set of 30 textures from Brodatz database previously tested
in other works [12, 13]. Each 512 × 512 texture is subdivided into
100 overlapping subimages of size 64 × 64. The SAEC for each
subimage is calculated using the algorithm from Figure 4. From the
100 subimages, 50 are used for training and 50 are used for testing.
Hence we have 1500 subimages for training and the remaining 1500
for testing.

Classification is performed over the testing set. Feature vectors
are formed by picking points from the SAEC. We use feature vec-
tors of dimension four, six, seven and eight, where the points are
evenly space along the 19 elements of the array e[i]. The classifi-
cation results for the frame representations are tabulated in Table 1.
We observe that for the FUBP and UDWT there is a gradual increase
in classification rate up to seven or eight features. Beyond eight fea-
tures the classification performance decreases (not shown). The best
classification performance was given by the UDWT using eight fea-
tures. The BDFB follows closely, but the lower redundancy of the
UDWT makes it a more attractive choice. The SP has significantly
lower performance compared to the other two MR frames.

Table 1. Correct classification rates (in %) for Brodatz textures using
SAECs

Num. Features FUBP UDWT SP
4 86.73 90.47 84.6
6 92.20 95.80 87.2
7 94.80 95.80 85.8
8 94.73 96.13 85.0

These results are lower than those reported using the BDFBwith
99.62% classification [13], and the Tree Structured Wavelet Trans-
form with 98% correct classification [12]. However, in these two
cases, the classification results were obtained with 10 features.

For the second scenario, we test the proposed feature set for ro-
tation invariance. We use the texture data from [6]. We use 13 tex-
ture classes with six rotation angles (0◦, 30◦, 60◦, 90◦, 120◦ and
150◦). Each texture of size 512× 512 pixels is divided into sixteen
128× 128 subimages. Eight subimages from every texture are used
for training and the remaining 8 are used for testing. Hence, we use
624(13 × 8× 6) images for training and 624 for testing. Classifica-
tion results are shown in Table 2. The best results are given by the
FUBP and UDWT using six features. We obtain 95% correct clas-
sification rate in both cases. There are some additional observations
to make from this table. First, the SP fails at providing good results;
this is a somewhat unexpected result give the directional selectivity
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of this representation and its previous use in RI classification [5].
Further investigation is needed to understand these results. Second,
the UDWT performs as well as the FUBP. This is an unexpected re-
sult given the limited directional selectivity of the UDWT. In fact the
UDWT cannot be used with DFT-encoding to achieve RI features.

Table 2. Rotation invariant correct classification rates (in %) using
SAECs

Num. Features FUBP UDWT SP
4 93.75 93.11 59.62
6 95.51 95.83 45.19
7 93.27 74.52 39.42
8 20.67 81.73 32.69

These classification rates are comparable to other works using
the same data set. Haley and Manjunath [6] achieved 96.8% correct
classification using 204 features. Rosiles, et al. [8] obtained 96.96%
correct classification using 12 features. In conclusion, the proposed
feature set achieves competitive rotation invariant classification us-
ing significantly less features and without the need of feature post-
processing steps to generate RI features.

Finally, in our third scenario we evaluate the FUBP features
when the training set consist of a textures at a single angle, and the
testing set consists of texture samples rotated at angles different from
the training set. We use the same data set of rotated textures tested
previously. Each texture class has 16 128× 128 training images and
80 testing images per class. The experiment in performed six times
changing the training angle at each instance. Classification results
are shown in Table 3 for 4,6,7 and 8 features. The best classification
rate of 94.69% was obtained using 4 features and the 30◦ training
set. We note that for seven and eight features the results show large
swings in classification rate. The causes of these variations is cur-
rently under study, but there seems to be a strong dependance on on
the points selected along the SAEC curve to form the feature vectors.

Table 3. Classification rates for the FUBP using only images at one
angle for training (in %).

# feats. 0◦ 30◦ 60◦ 90◦ 120◦ 150◦

4 86.2 94.6 92.1 88.6 80.5 83.17
6 88.9 92.6 92.6 90.8 87.9 87.40
7 10.7 24.8 26.3 90.9 25.8 27.02
8 22.1 19.1 92.0 19.8 25.4 86.73

5. CONCLUSIONS

In this paper we have presented a novel set of rotationally blind fea-
tures for texture classification. The features are obtained from Se-
quential Approximation Error Curves (SAECs). The key finding
is that these curves are blind to rigid rotations on textures. This
property generates rotation invariant features without additional fea-
ture post-processing like DFT-encoding. This property reduces the
computational complexity of texture classification systems. Exper-
imental results show that the SAEC feature sets have competitive
classification performance for the UDWT and FUBP with respect
to well known schemes. Moreover, the number of SAEC features

needed to achieve these results are significantly less than the com-
peting schemes. We consider the performance of the UDWT-SAEC
features for RI classification to be remarkable, given the excellent
classification results despite the limited directional selectivity of the
UDWT. This implies that other factors not related to the orientation
selectivity of the frame play a role to generate RI features. Important
questions remain open for exploration in the future. First, a theoret-
ical framework is needed to understand the RI properties of SAECs.
Second, an optimal feature selection scheme for SAECs needs to be
developed as indicated by the variability and instability of the clas-
sification results in some cases. Finally, we need to explore the in-
variance of SAECs to other geometrical distortions like scaling and
perspective.
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