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ABSTRACT

This paper presents a novel pattern classification approach–

a kernel and Bhattacharyya distance based classifier which

utilizes the distribution characteristics of the samples in each

class. Bhattacharyya distance in the subspace spanned by the

eigenvectors which are associated with the smaller eigenval-

ues in each class is adopted as the classification criterion. The

smaller eigenvalues are substituted by a small value threshold

in such a way that the classification error in a given database

is minimized. Application of the proposed classifier to the is-

sue of handwritten numeral recognition demonstrates that it

is promising in practical applications.

Index Terms— Pattern classification, character recogni-

tion, feature extraction

1. INTRODUCTION

Generally, a recognition system consists of preprocessing, fea-

ture extraction, classifier and postprocessing. For a large data

set, the high dimensionality problem has to be solved first.

PCA (Principal Component Analysis) is often used to lin-

early transform a high-dimensional input vector into a low-

dimensional one whose components are uncorrelated [1]. How-

ever, PCA sometimes does not provide a satisfactory perfor-

mance in classification, because PCA averages the character-

istics of not only the between-class but also the within-class.

PCA uses the global covariance while the within-class con-

tribution to the recognition performance is not taken into ac-

count.

Recently, Bhattacharyya distance has investigated in pat-

tern classification. C. Lee, et al reported that the accurate

estimation of classification error becomes possible by using

the Bhattacharyya distance [2]. Choi, et al depicted a feature

selection approach based on Bhattacharyya distance in [3].

In this paper, we combine the Bhattacharyya distance with

the kernel approach to propose a new pattern classification

scheme, viz. a kernel and Bhattacharyya distance based clas-

sifier (KBD for short hereinafter). Bhattacharyya distance is

regarded as an optimization criterion assuming the samples of

database are subjected to the normal distribution. KBD makes

full use of characteristics of each class distribution such as

the class mean and covariance. Furthermore, we explore the

relationship between the kernel and Guassian processes, and

apply a kernel to Bhattacharyya distance to achieve a better

recognition performance. In addition, we utilize a threshold

to replace these smaller eigenvalues for the solution of non-

existing inverse matrix for covariance matrix. In general, the

threshold is selected so that the classification error in a given

database is minimized. We apply the proposed classifier to the

issue of handwritten numeral recognition and the experiment

demonstrates it is promising in practical applications.

The rest of the paper is organized as follows: The pro-

posed algorithm is depicted in Section 2. The experimental

results of the proposed classifier are presented in Section 3,

and the conclusion is drawn in Section 4.

2. ALGORITHM DESCRIPTION

2.1. Bhattacharyya distance

Suppose that a database has C classes, and X = {xj ; j =
1, 2, · · · , n} is a data set of ith class. The mean vector of

ith class: μi = 1
n

∑n
j=1 xj ; the covariance matrix of the ith

class: Σi = 1
n

∑n
j=1(xj − μi)′(xj − μi). In the paper, the

definitions of i, j fit for all equations, i.e.,j = 1, 2, · · · , n; i =
1, 2, · · · , C.

Supppose that P (ω) = {P (ωi); i = 1, 2, · · · , C} is the

probability of each class. When the distribution of the set is

Gaussian distribution, the Bhattacharyya distance function is

defined by:

gi(x) = −1
2
(x−μi)′Σ−1

i (x−μi)− 1
2

ln |Σi|+lnP (ωi) (1)

where, Σ−1
i denotes the inverse matrix of the covariance ma-

trix obtained from Σi. There exists theorthonormal matrix Ui

, so that Σi = U ′
iΛiUi , where, Λi is the eigenvalues matrix

of Σi (Λi = diag{λi1, · · · , λik, λik+1, · · · , λid}). We sort

the eigenvalues (and their corresponding eigenvectors) so that

λi1 > · · · > λik > λik+1 > · · · > λid. Then , Eq.(1) can be

rewritten as:

gi(x) = −1
2
(x−μi)′(U ′

iΛiUi)−1(x−μi)−1
2

ln |Λi|+lnP (ωi)
(2)

2.2. Kernel and Gaussian Processes

For a finite set of linear variables X = (x1, · · · , xl), a Gaus-

sian distribution (with zero mean) is specified by a symmetric
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positive definite covariance matrix Σ = Σ(x1, · · · , xl) with

the corresponding distribution given by:

PF∼D[(f(x1), · · · , f(xl)) = (y1, · · · , yl)] ∝ exp(−1
2
y′Σ−1y)

(3)

A Gaussian process is a stochastic process for which the marginal

distribution for any finite set of variables is zero mean Gaus-

sian. The (p, q) entry of Σ measures the correlation between

f(xp) and f(xq), that is the expectation E[f(xp)f(xq)], and

hence depends only on xp and xq. There therefore exists a

symmetric covariance function K(x, z) such that

Σ(x1, · · · , xl)pq = K(xp, xq). All finite sets of input points

of the covariance matrix is required positive definite, which

nicely conforms to the defining property of a Mercer kernel

given in [4], and hence we see that defining a Gaussian pro-

cess over a set of variables indexed by a space X is equiva-

lent to defining a Mercer kernel on X × X . The definition

of a Gaussian process by specifying the covariance function

avoids explicit definition of the function class, and the prior

over the functions in. Indeed one choice of function space is

the class of linear functions in the space F of Mercer features:

X = (x1, · · · , xl) −→ Φ(X) = (φ1(x), · · · , φq(x), · · · )
(4)

in the l2 space defined by the weighted inner product given by

< Ψ · Ψ̃ >=
∞∑

q=1

λqψqψ̃q (5)

The prior distribution over the weight vector Ψ is chosen to be

an independent zero mean Gaussian in each coordinate with

covariance in coordinate p equal to
√

λp. From the above

statement, we can see the relationship between the kernel and

Gaussian processes. One condition of Bhattacharyya distance

is that the samples in a given database are subjected to Gaus-

sian distribution, and then we try to find out the relationship

between the kernel and Bhattacharyya distance. Here, we de-

scribe a property of the kernel. Let B be a symmetric pos-

itive semi-definite matrix. Consider the diagonalisation of

B = V ′ΛV by an orthogonal matrix V , where Λ is the di-

agonal matrix containing the non-negative eigenvalues. Let√
Λ be the diagonal matrix with the square roots of the eigen-

values and set A =
√

ΛV . We therefore have:

x′Σz = x′V ′ΛV z = x′V ′√Λ
√

ΛV z

= x′A′Az =< Az · Ax >= K(x, z) (6)

where the inner product using the feature mapping A, K(x, z)
is the kernel. Based on the property of the kernel and the

relationship between the kernel and Gaussian processes, the

main part of Bhattacharyya distance becomes:

gi(x) = −1
2
(x − μi)′(U ′

iΛi
−1Ui)(x − μi)

= K(
√

Λ−1
i Ui(x − μi),

√
Λ−1

i Ui(x − μi)) (7)

We employ the above discriminant to classification. The ker-

nel K is selected as the polynomial or Gaussian kernel in the

experiment, denoted by:

(1) Polynomial kernel: K(x, z) = (< x, z > +C)d where d

is any positive integer and C is a constant

(2) Gaussian kernel: K(x, z) = exp(−||x − z||2/σ2) In the

experiment, the value of σ depends on the eigenvalues of each

class.

2.3. Classification Approach Based on Kernel and Bhat-
tacharyya Distance (KBD)

We calculate the covariance matrix of each class and obtain

the corresponding eigenvalues and eigenvectors. If the data

distribution is Gaussian distribution, the classification capa-

bility is optimal when the total eigenvectors are calculated.

The smaller the eigenvalue, the better the classification per-

formance. Because the smaller eigenvalue reflects the conver-

gence of within-class, the corresponding eigenvector is more

important. But, in practice, there exist some small eigenval-

ues that are close to zero, which causes a problem to calcu-

late the inverse matrix of the covariance matrix Λ−1
i and then

Bhattacharyya distance classifier becomes invalid.

To deal with this problem, we utilize a threshold λ0 to re-

place all of eigenvalues which are less than λ0, i.e., λij = λ0,

if λij ≤ λ0, j = k + 1, k + 2, · · · , d, i = 1, 2, · · · , C . Then

we obtain the new matrix Λ̃i:

Λ̃i = diag{λi1, · · · , λik, λ0, · · · , λ0} (8)

Although the value of λ0 is very small, Σ−1
i could be inversed

and we can continue the downstreaming process. In this ap-

proach, we employ λ0 to substitute all small eigenvalues of

each class, i.e. the smallest eigenvalue of each class is same.

In fact, the samples in a given database are not always

subjected to Gaussian distribution. In this situation, we can

still employ the above method. For a given database, the value

of the threshold λ0 depends on the error rate of classification

(see Eq.(9)).

λ0 = min
λ0

(errordatabase) (9)

Based on the above statement, we combine Bhattacharyya

distance with the Kernel method, and utilize a specified thresh-

old which replaces small eigenvalues to solve the inverse ma-

trix of the covariance matrix. We name this approach KBD

hereinafter. If Gaussian kernel or Polynomial kernel is em-

ployed, it is called KBD-G and KBD-P, respectively. BD is

used to stand for the classifier of Eq.(2).

The proposed classification approaches are based on Bayes

discriminant. However, the optimal parameter is selected in

such a way that the classification error in a given database

is minimized, so our classification approach is the improved

Bayesian classification, not strict Bayesian classification in

some sense.
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3. EXPERIMENTS AND RESULTS

3.1. Experiments on Handwritten Bangla Numeral Recog-
nition

In order to verify the validity and performance of the proposed

classifier, we apply it to the issue of the handwritten Bangla

numeral recognition [5].

Figure 1 shows the samples of handwritten Bangla nu-

merals. These numerals are acquired from live letters by the

automatic letters sorting machine in the Dhaka mail process-

ing centre of Bangladesh Post Office. We randomly select

30,000 samples as the training set and 15,000 samples as the

test set. In this paper, our experiments are tested on a PC with

Windows xp, Pentium 1.8G and 512 RAM. To evaluate the

performance of our proposed pattern classification, apart from

BD, KBD-P and KBD-G, three other classifiers are also tested

for the purpose of comparison. They are Euclidean Distance,

BP and SVM (Gaussian kernel).

Note that the six classifiers utilize PCA to lower the di-

mension to 100 for each input pattern. Table 1 presents the

recognition rate and the processing speed of the six classi-

fiers. It can be found that the recognition rate of Euclidean

Distance is not good but the recognition time is the least. The

recognition rates of the first three classifiers are lower than the

rest. Obviously, the recognition time of the proposed classi-

fiers are dramatically reduced while the high recognition rate

is obtained. It can be seen that the classifiers proposed in

this paper are superior to the others in the recognition perfor-

mance.

Fig. 1. Samples of handwritten Bangla numeral images(0-9)

Table 1. Performance comparison of six approaches

Classifier Recognition rate Recognition time

Euclidean Distance 85.83% 1.61ms

BP 89.01% 6.21ms

SVM 90.24% 12.41ms

BD 95.46% 7.43ms

KBD-P 96.85% 7.46ms

KBD-G 96.91% 7.52ms

In the above experiments, we compare the recognition re-

sults achieved by different classifiers. To further investigate

the recognition performance of the proposed classifiers, we

carry out some experiments to show the relations among the

recognition performances such as the recognition rate, the er-

ror rate.

Figure 2 shows the relationship between the threshold λ0

and the recognition rate. The recognition rate increases with

the threshold increasing. But when the threshold is larger than

0.5, the recognition rate decreases. The figure shows that the

threshold is not always small when the error rate is low. As

the whole, the recognition result of KBD is superior to BD

regardless of polynomial or Gaussian kernel to be adopted.

The proposed classifiers minimize the classification error

in the training set, so they are obviously depend on the train-

ing set used. An experiment is carried out to investigate the

influence of the number of training samples on the recogni-

tion performance. Figure 3 shows the recognition rate of the

classifiers achieved by different numbers of training samples

where λ0 is set to be constant 0.25. It can be found that the

recognition result becomes stable while the training set has

more than 20,000 samples. From our experiments, we can

see the average recognition rates of the classifiers are similar.

Fig. 2. Recognition rate vs. λ0

Fig. 3. Recognition rate vs. training number
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3.2. Experiments on UCI and MNIST data sets

So far, we have described the results of the approaches for

recognizing handwritten Bangla numerals. To test the feasi-

bility of the proposed methods to other application, the ap-

proach is tested on two numeral databases. The first database

is UCI data set which is consisting of 5620 handwritten nu-

meral characters. A random procedure is used for partition of

the database to the training and testing subsets, and 300 for

training and the rest for testing. The original image of each

numeral character has the size of 32×32 pixels. We compare

our proposed classifier with some existing classifiers. The

comparison is listed in Table 2, from which we can see that

the recognition rates achieved by our classifiers are better and

the proposed method scales well to a small database of hand-

written digits.

The second database is the MNIST database. It contains

60,000 handwritten digit images for the classifier training and

10,000 handwritten digit images for the classifier testing. All

digits have been size-normalized and centered in a 28 × 28
box. Some classifiers proposed in previous papers are used

to test [6, 7, 8]. Figure 4 presents the performances of differ-

ent algorithms tested on the MNIST database. The proposed

classifier (KBD-P) is used on the original MNIST database

and achieves a good performance with 1.8% error rate. The

experimental result of LeNet5 is 0.95% error rate, one of the

best classifiers on the market. Although the recognition per-

formance achieved by our classifier is not the best, our classi-

fier is efficient and not complex.

Table 2. Recognition rates of seven classifers on UCI data

Classifier Recognition rate(%)

Linear classifier(1 layer NN) 93.39

K-NN 95.82

BP 96.85

SVM 97.97

BD 98.39

KBD-P 99.08

KBD-G 98.93

4. CONCLUSION

A new classifier based on the kernel approach and Bhattacharyya

distance is proposed in this paper. KBD makes full use of

characteristics of each class distribution such as the class mean

and covariance while it does not average the covariance ma-

trix of all classes. In all eigenvalues of each class, a small

value threshold is used to substitute the smaller eigenvalues

to overcome the problem of non-existing inverse matrix for

covariance matrix so that the classification error in a given

database is minimized. The experimental results have demon-

strated its efficiency in both the recognition rate and the clas-

sification time.
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