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ABSTRACT

A novel method based on Empirical Mode Decomposition (EMD) is
introduced in this paper for the detection of af ne invariant interest
or feature points. The proposed algorithm is a contour based method,
where image edges are rst detected by utilizing morphological op-
erators followed by an edge thinning process and then the corner
or interest points are identi ed based on the local curvature of the
edges. In this work a novel method based on 1-D EMD is formulated
to select good discriminative interest points from the edges. The pro-
posed method is compared with four existing approaches that yield
good results. The performance is evaluated by employing a criteria
known as repeatability rate, which evaluates the geometric stabil-
ity of an interest point detector under different transformations. The
results prove the ef cacy and superiority of the proposed technique
over other schemes in terms of detecting more true corner points.

Index Terms - Empirical mode decomposition, wavelet decom-
position, intrinsic mode function, morphological operations.

1. INTRODUCTION

Current interest point detection methods can be categorized into three
types: contour based, parametric model based and intensity based
methods. Parametric model methods t a parametric intensity model
to the signal [1, 2]. Intensity based methods compute a measure that
indicates the presence of an interest point directly from the grey val-
ues [3, 4]. Contour based methods rst extract contours and then
search for maximal curvature or in exion points along the contour
chains, or carry out some polygonal approximation and then search
for intersection points [5, 6]. It is reported that the wavelet trans-
form is a robust scheme for feature points detection due to its abil-
ity to capture the local deviations at various decomposition levels
[7, 8]. Our work is inspired by the fact that there is a correspon-
dence between the wavelet decomposition (WD) and an EMD of a
given signal, e.g. WD of a signal gives higher energy where the sig-
nal contains information, likewise intrinsic mode function (IMF) of
EMD shows higher frequency content at the same locations.

This paper presents a novel af ne invariant interest point detec-
tor based on 1-D EMD [9]. In addition, a new scheme for edge
thinning is proposed. Speci cally, edge detection is performed us-
ing morphological gradient operator [10], followed by edge thinning
based on edge thickness in the horizontal and vertical directions. To
detect true corner points from the circular arcs, the 2-D boundaries of
an object are represented by the 1-D tangent angles of the boundary
point coordinates. Then we use an eigenvector of the covariance ma-
trix for a boundary point over a small region of support (ROS) on a
small boundary segment, as a curvature function for feature point de-
tection [11, 8]. Based on the fact that true corners result in stronger

tangent variations, the 1-D EMD is utilized to decompose the 1-D
tangent angles and capture the irregular angle variations. Finally, the
locations of the true feature points are identi ed by comparing the
local frequency content of the rst intrinsic mode function (IMF) of
the 1-D decomposed signal with a pre-de ned threshold.
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Fig. 1. Block Diagram of the proposed algorithm

In this paper we evaluate the proposed method utilizing the ’re-
peatability’ [12] criteria, which directly measures the quality of the
detected feature points for tasks such as image matching, object
recognition and 3D reconstruction. Repeatability explicitly com-
pares the geometrical stability of the detected interest points between
different images of a given scene taken under varying viewing con-
ditions. The proposed detector is compared to four existing methods
which have been shown to yield good results. Utilizing repeatabil-
ity the proposed method is shown to yield comparable to improved
results.

2. PROPOSED ALGORITHM

A block diagram of the proposed algorithm is shown in Fig 1, and
the algorithm steps are detailed in the following:

2.1. Morphological Edge Detection

In the followed edge detection scheme, the intensity image I is rst
blurred (to reduce false edges and over-segmentation) using open-
close and close-open lters. The nal blurred image, Ib, is the av-
erage of the outputs of these two lters. Next, the morphological
gradient operator is applied to the blurred image Ib, resulting in an
image, Ies = δB(Ib) − εB(Ib), where δB and εB and are the di-
lation and erosion operators, respectively, utilizing a 3x3 structuring
element B. The resulting image Ies is then globally thresholded by
the level, γ =

�
(Ies · c)/

�
c, where · denotes pixel-wise multipli-

cation and c = max (|g1 ∗ ∗Ies|, |g2 ∗ ∗Ies|); where, g1 = [−101];
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g2 = [−101]T , and ∗∗ denotes 2-D convolution. The binary edge
image is given by, Ie = 1; if Ies > γ and Ie = 0; if Ies ≤ γ.
A new edge thinning algorithm is applied to this binary image to
obtain ne, narrow and well-de ned object boundaries, where the
morphological edge map is scanned along the horizontal and verti-
cal directions to reduce the width of the edges to a single pixel by
erosion. During horizontal scanning, all the nonzero neighborhood
pixels of a nonzero edge pixel in a horizontal window 1xwh are set
to 0. The resulting image is Ihe,

Ihe(xi, yi) = Ie(xi, yi); for Ie(xi, yi) �= 0
Ihe(xi, yj) = 0; for j ∈j �=i {i−

wh

2
, i + wh

2
}

(1)

Similar operations in the vertical direction yield

Ive(xi, yi) = Ihe(xi, yi); for Ihe(xi, yi) �= 0
Ive(xj , yi) = 0; for j ∈j �=i {i−

wv

2
, i + wv

2
}

(2)

The maximum of Ihe and Ive is set as the thinned binary edge image,
Ite = max (Ihe, Ive). The image Ite may still contain isolated noisy
spurious edges and to remove these, edge segments of length less
thanN are deleted. Let n sequential points describe an edge segment
P in Ite such that P = {pi = (xi, yi); i = 1, 2, 3 . . . n}. Then

Ite(xi, yi) = 0 for (xi, yi) ∈ P and n ≤ N (3)

The resulting nal binary edge image, Ifte, contains 1-pixel width
boundaries in the image.

        (a)             (b)               (c) 

Fig. 2. a) Intensity image, b) Morphological edge image, and c)
Canny edge image

The derived edge detection and thinning method is used in lieu
of traditional method, such as Canny edge detection [13], because
it returns edge segments rather than contiguous edge lines, which
is bene cial in feature point detection. As an example, the inten-
sity image, the nal morphological edge image and the edge image
obtained by Canny’s method are shown in Fig 2 (a), (b) and (c),
respectively. From this gure it can be seen that the method used in
this work yields fewer extraneous boundaries than Canny’s method.
Furthermore, the proposed method returns all necessary foreground
object boundaries.

2.2. Feature Points Extraction

After obtaining the binary edge image, Ifte, the feature points along
the boundaries of objects must be determined. In this work, the 2-
D boundaries of an object are initially transformed to a 1-D θ − P
representation. The procedure of nding the tangent angle of the
boundary point is as follows.

2.2.1. 1-D θ − p Representation of Boundary Segment

From the binary edge image, Ifte the x-y coordinates of each point
of a boundary segment are rst extracted into an array. Let a bound-
ary P of an object be described by n sequential digital points, P =
{pi = (xi, yi); i = 1, 2, 3 . . . n}, where pi+1 is adjacent to pi on P .

Let Ns(pi) denotes a small boundary segment of P with point pi is
at the center of Ns(pi) over the ROS between points pi−s and pi+s

for some integer s. That is, Ns(pi) = {pj : j ∈ {i − s, i + s}}.
Therefore, the covariance matrixM(pi) for point pi is estimated by
the boundary points coordinates within Ns(pi) [14]:

M(pi) =

�
m11 m12

m21 m22

�
(4)

m11 =
�

1

2s+1

�j=i+s

j=i−s x2
j

�
− x̄2

i , m22 =
�

1

2s+1

�j=i+s

j=i−s y2
j

�
− ȳ2

i

m12 = m21 =
�

1

2s+1

�j=i+s

j=i−s
xjyj

�
− x̄iȳi

where x̄i and ȳi are the geometrical center of Ns(pi). The eigen-
values λ1 and λ2 of M(pi) are the solutions of the characteristic
equation DET (M(pi) −D), where D is unit matrix. The tangent
angle of point pi, denoted by θ(pi), is simply de ned as, θ(pi) =

arctan
�

λ1−m11

m12

�
.

2.2.2. Detection Procedure

Consider a n1-point digital boundary, P = {pi = (xi, yi); i =
1, 2 . . . n1}, traversing points (x1, y1), . . . (xn1

, yn1
), and circum-

venting the boundary in the counterclockwise direction. For each pi

there corresponds a 1-D θ − P signal, θ(pi), 1-D wavelet signal,
Y (pi), and a 1-D rst IMF signal of the EMD, X(pi). As an exam-
ple we have chosen a binary image of an arti cial ’h’-shape object.
Fig 3 (a) presents the edge image of that object with one boundary
involving n1 =273 boundary points. The character ’+’ in Fig 3 (a)
denotes the starting boundary point (x1, y1) and the arrow indicates
the direction of boundary following. The corresponding 1-D θ − P
representation of the object boundary, θ(pi) is shown at the top of
Fig 3 (b), which is used as an input signal to both the 1-D WD uti-
lizing the ’harr’ basis function and the 1-D EMD. The middle plot
of Fig 3 (b) shows 1-D wavelet coef cients at the nest ( rst) de-
tailed decomposition level, Y (pi). The bottom plot of Fig 3 (b) is
the rst IMF X(pi) obtained from θ(pi). From Fig 3, it is clearly
seen the correspondence between the value of wavelet coef cients
and the frequency content of the rst IMF. The nest scale wavelet
energies are distinctly higher at curvatures than at smooth boundary
points. Feature points extracted by the 1-D WD method are shown
in Fig 3 (c).

In case of EMD, the rst IMF shows distinctly higher frequency
content at true feature points than at straight lines. The algorithm for
nding true interest points makes four passes through the IMF sig-
nal. First, points are selected if they exceed a minimum number of
zero crossings around them. Second, if two selected points are adja-
cent then one is deleted based on the concentration of zero crossings.
During third pass, the selected points that are not locally maximum
in the original intensity image in its 3x3 neighborhood are deleted.
In the nal pass, the subset of pixels are kept such that the minimum
distance between any pair of points is larger than a given threshold.
Let Z(pi) be the set of zero-crossing points of the IMF around pi.

Z(pi) = {pj : X(pj−1)X(pj+1) < 0} (5)

for j ∈ {i − Wz

2
, i + Wz

2
}, where Wz de nes window centered

at pi. If for a point the number of zero crossings is greater than a
prede ned threshold, thz (in our work the threshold is 1/3 of the
maximum number of zero crossings in the IMF signal), that point is
likely a feature point. This is the rst selection of the feature points
from the object boundary, which forms the set F1 ⊂ P .

F1 = {pi : Z(pi) > thz}
F1 = {pi = (xi, yi); i = 1, 2, 3 . . . n2 : n2 < n1}

(6)
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where n1 is the no. of all the boundary points and n2 is the num-
ber of selected points after discarding redundant points. To further
discard redundant points from F1, we check whether several neigh-
boring points have the same number of zero crossing points over a
Ws=1x11 size window, and we keep the points among those that
has the most concentrated zero crossing points. Hence for each
point over the window Wz, we calculate the sum of the distances
from all the zero crossing points to the point under consideration, pi,

S(pi) =
�j=i+

Wz

2

j=i−
Wz

2

|pi − pj |.
If F2 ⊂ F1 is the set of feature points after discarding redundant

points from F1, then F2 ∩ F1 is the set of discarded points.

F2 ∩ F1 = {pj : Z(pj) = Z(pi), S(pj) �= min{S(pj)}}
F2 = {pi = (xi, yi); i = 1, 2 . . . n3 : n3 < n2}

(7)

for j ∈ {i − Wz

2
, i + Wz

2
}, where n3 is the number of selected

points after discarding redundant points from F1. Finally, from the
points in F2, we retain those points that are locally maximum in
their Wm=3x3 neighborhood with the restriction that the distance
between any two feature points is larger than a given threshold (this
is set to 5 pixels in our experiment). Thus, F3 ⊂ F2 is the set of
feature points that are locally maximum in the edge image, Ifte,
and Ff ⊂ F3 is the nal set of feature points after discarding those
closely spaced points.

F3 = {pi = (xi, yi) : Ifte(xi, yi) = max Ifte(xj , yj)}
F3 = {pi = (xi, yi); i = 1, 2 . . . n4 : n4 < n3}

(8)

for j ∈ {i− Wz

2
, i+ Wz

2
}, where n4 is the number of selected points

after discarding redundant points from F2.

Ff = {pi : |pi − pi−1| > 5 pix, |pi − pi+1| > 5 pix}
Ff = {pi = (xi, yi); i = 1, 2, 3 . . . n5 : n5 < n4}

(9)

where n5 is the number of selected points after discarding redundant
points from F3. Following the above procedure, the extracted nal
feature points, Ff for the arti cial ’h’-shape object are shown in Fig
3 (d). EMD determined feature points are found at all the curvatures
of the object whereas the WD approach misses some curvatures as
shown in Figs 3 (c) and (d).

        (a)       (b)              (c)        (d) 

Fig. 3. a) Edge image of letter ’h’; b) The 1-D θ − P representa-
tion (top), haar wavelet decomposition (middle), and the rst IMF
of EMD (bottom); c) Feature points obtained from wavelet coef -
cients; and d) Feature points obtained from the frequency content of
the rst IMF of EMD

For an image with more than one object and objects with com-
plicated shape, we perform EMD on each edge fragment to extract
local curvature following the above procedure. Thus we nd feature
points for each fragment of edge independently and the nal feature
points are the accumulation of all the points obtained from all the
edge boundary segments.

3. EXPERIMENTAL RESULTS

Results of experiments conducted to test the ef cacy of the proposed
corner detection algorithm are provided in this section. In order to

test the immunity of the proposed algorithm to transformations, the
original images are scaled and rotated. Stability to image noise is
also tested. Additionally, the repeatability rates of four interest point
detectors are compared with the presented method under different
image rotation and scale changes. For comparison, we have chosen
four detectors that are reported to offer good performance. Among
the four chosen detectors, Harris [3] and Tomasi’s method [4] are
intensity based methods. These are chosen because Harris’s method
has been reported to be better than any other detector and Tomasi’s
detector is the best for tracking applications. The other two detectors
[7, 8] are chosen because 1) they are contour based methods like the
proposed method and 2) they use the WD.

  (a)             (b)    (c)                (d)      (e) 

           (f)    (g)                (h)                   (i)                (j) 

  (k)             (l)    (m)                (n)      (o) 

  (p)             (q)    (r)                (s)      (t) 

Fig. 4. Feature points detected by a) Harris method, b) Tomasi’s
method, c) Loupias’s technique, d) Yeh’s algorithm, and e) Pro-
posed technique; Feature points detected in 40o rotated image by
f) Harris method, g) Tomasi’s method, h) Loupias’s technique, i)
Yeh’s algorithm, and j) Proposed technique; Feature points detected
in 1.5 times scaled image by k) Harris method, l) Tomasi’s method,
m) Loupias’s technique, n) Yeh’s algorithm, and o) Proposed tech-
nique; Feature points detected in noisy image by p) Harris method,
q) Tomasi’s method, r) Loupias’s technique, s) Yeh’s algorithm, and
t) Proposed technique

Simulation results of the ve methods on real image are pre-
sented in Fig 4. For the reference image shown in Fig 2 (a), feature
points extracted by Harris’s approach, Tomasi’s method, Loupias’s
technique, Yeh’s algorithm and the presented method are shown in
Fig 4 (a), (b), (c), (d) and (e), respectively. From this gure it can be
seen that points selected by the proposed method covers all the cur-
vatures of object boundaries and yields the most true corner points.
To evaluate detector rotation invariance, Figs 4 (j) shows the de-
tection results of the proposed method for the rotated version of the
reference image, where the rotation angle is 40o. The performance
of Harris’s, Tomasi’s, Loupias’s and Yeh’s methods are given in Fig
4 (f), (g), (h) and (i), respectively. From the gures, it can be said
that Harris’s and the proposed method give the best result for this ro-
tation. The performance of Loupias’s technique is better than Yeh’s
algorithm and Tomasi’s method is not rotation invariant.

The effect of image scale change on detection result is tested and
demonstrated in Figs 4 (k)-(o), where the scale factor is 1.5. Points
detected by Harris’s, Tomasi’s, Loupias’s, Yeh’s and proposed meth-
ods are presented in Fig 4 (k), (l), (m), (n) and (o), respectively. It
can be seen from the gures that all the methods are scale invari-
ant. To check the performance with noise, we have added Gaussian
noise with a SNR of 25dB. The performance of Harris’s, Tomasi’s,
Loupias’s, Yeh’s and proposed methods are given in Fig 4 (p), (q),
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(r), (s) and (t), respectively. The results show that except Loupias’s
technique, the other four methods work well in presence of noise.

From the gures in can be concluded that the proposed method
can be used as an af ne scale and rotation invariant detector. As
a qualitative evaluations, the stability and accuracy of the detectors
are measured using the repeatability criterion [12]. The repeatabil-
ity score for a given pair of images is the average number of corre-
sponding points detected in those images under different geometric
and photometric transformations. We rst compare the detectors for
image rotation followed by scale change and additive noise. The re-
peatability rate as a function of the angle of image rotation (0o and
180o) is displayed in Fig 5 (a). Though the repeatability rate of all
the ve detectors depend on the rotation angle, from the plots it can
be noticed that the proposed method is signi cantly less dependent
on image rotation than the other four methods. Speci cally, there is
no spike in the repeatability rate plot for the EMD based method, un-
like the other methods. This transformation independence is a very
important characteristic for any feature point detector.

Fig 5 (b) shows the repeatability rate as a function of scale
changes from 1 to 4. The results show that all the detectors are scale
sensitive. The Harris and the proposed detectors give the best results,
with the repeatability rate a decreasing function of scale change.
Tomasi’s, Laopious’s and Yeh’s methods are very sensitive to scale
change and the results of these methods are hardly usable. To study
repeatability in the presence of image noise, the repeatability rate
is displayed as a function of SNR. For performance evaluation with
noise, the SNR is varied from 21dB to 35dB and the results are dis-
played in Fig 5 (c). All the detectors give reasonable results in the
additive noise cases, with the exception of the Yeh’s method. No-
tably, the proposed method is the least noise sensitive as it obtains a
repeatability rate of nearly 70% for all levels of noise considered.

  (a)         (b)          (c) 

Fig. 5. Plot for the repeatability rate as a function of a) Rotation
angle, b) Change in scale, and c) Noise level

After the examination of the overall detection results it can be
claimed that the proposed method is better than the other four meth-
ods. It’s performance is the least dependent on transformations and
noise, which is a desirable and attractive characteristic for any fea-
ture point detector. As a contour based technique, the presented ap-
proach can be expected to perform well for the applications where
true corner points are needed to be detected from the object bound-
aries for further processing.

4. CONCLUSION

In this research, we present a robust, rotation invariant, and scale-
invariant corner detection scheme based on the morphological oper-
ation, the eigenvectors of covariance matrices and 1-D EMD.We im-
prove the existing morphological edge detection scheme to give thin
edges and eliminate spurious edges resulting from the background.
The novelty of this work is the utilization of the rst IMF of EMD
of the 1-D θ − P signal of the edge to localize true corner points
on boundary contours. The interesting attribute of this technique is
that it does not detect feature points globally from the whole image

at a time rather it detects feature points locally, based on the neigh-
boring characteristics of a small portion of the edge of an image.
That is the reason of the presented method to be more independent
of image transformation than the other four methods considered for
comparison. Thus, interest points detected by the proposed method
are largely independent of the imaging conditions; therefore, points
are geometrically stable.

The proposed approach precisely captures the true corner points,
has strong robustness of detecting good feature points, and is free
from the false alarms on circular arcs for both simple and compli-
cated objects in varying rotation, scale conditions and noise contam-
inations. Experimental results also suggest that the proposed 1-D
EMD based corner detection approach is stable and ef cient. The
proposed method is a generic concept and can nd its application in
many matching and recognition problems.
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