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ABSTRACT 

Bidimensional empirical mode decomposition (BEMD) techniques 
are associated with high computation time and other artifacts 
because of the application of two dimensional (2D) scattered data 
interpolation methods. In this paper, order statistics filters are 
employed to get the upper and lower envelopes in the BEMD 
process, instead of the surface interpolation. Based on the achieved 
characteristics of the proposed approach, it is considered as fast 
and adaptive BEMD (FABEMD). Simulation results demonstrate 
that besides reducing the computation time, FABEMD outperforms 
the original BEMD in terms of the quality in some cases.  

Index Terms Bidimensional empirical mode decomposition 
(BEMD), envelope estimation, order-statistics filter.  

1. INTRODUCTION 

Empirical mode decomposition (EMD) is a relatively new concept 
in the area of signal processing [1]. The complete process of 
decomposing a signal into its intrinsic mode functions (IMFs) and 
finding the time frequency distribution is also known as the 
Hilbert-Huang transform (HHT) [1]. The technique extended to 
analyze two-dimensional (2D) data is known as bidimensional 
EMD (BEMD) and/or 2D EMD [2-5]. Like EMD, BEMD require 
finding local maxima and minima points (jointly known as local 
extrema points) and subsequent interpolation of those points.  

Extraction of each IMF requires several iterations.  Because 
the surface interpolation method itself fits a surface in an iterative 
optimization approach, it makes the BEMD process complex and 
excessively time consuming. Effects of incorrect interpolation due 
to the lack of extrema points at the boundary region and very few 
arbitrarily distributed extrema points at some stages of the process 
impose severe restriction on the application of BEMD. Although a 
few modifications have been suggested in the literature to improve 
the process [4-8], BEMD still suffers from the above mentioned 
problems to some extent.  

In this paper, a novel BEMD approach is proposed, which 
replaces the interpolation step by a direct envelope estimation 
method. In this technique, spatial domain sliding order-statistics 
filters, namely MAX and MIN filters, are employed to get the 
running maxima and minima of the data. Application of smoothing 
operation to the running maxima and minima results in the desired 
upper and lower envelopes, respectively. The size of the order-
statistics filters is derived from the available information of 
maxima and minima maps. Since the proposed BEMD process 
results in faster computation and incorporates adaptability, this 
process has been named as fast and adaptive BEMD (FABEMD). 
Although complete HHT analysis is possible with BEMD or 

FABEMD, the decomposition of an image into BIMFs alone offers 
a wide variety of image processing applications.  

2. BEMD OVERVIEW 

BEMD decomposes an image into its bidimensional IMFs (BIMFs) 
and a Residue based on the local spatial scales [2-4]. The BIMFs 
are expected to have the following properties [2, 3]: (i) at any 
point, the mean value of the upper and lower envelopes, defined by 
the local maxima and minima points, is zero; and (ii) they are 
locally orthogonal to each other.  

Let the original image be denoted as I, a BIMF as F, and the 
Residue as R. In the process, i-th BIMF Fi is obtained from its 
source image Si, where Si=Si-1-Fi-1 and S1=I. It requires one or more 
iterations to obtain Fi, where the intermediate state of a BIMF (IS-
BIMF) in j-th iteration can be denoted as FTj. The steps of the 
BEMD process can be summarized as below [1-3].   
i) Set i = 1 and Si = I.
ii) Set j = 1 and FTj=Si.
iii) Obtain the local maxima map of FTj, denoted as Pj; and local 

minima map of FTj, denoted as Qj.
iv) Generate the upper envelope (UE) UEj and the lower 

envelope (LE) LEj of FTj, by interpolating the maxima points 
in Pj and the minima points in Qj, respectively.  

v) Find the mean envelope (ME) as MEj=(UEj+LEj )/2. 
vi) Calculate FTj+1 as FTj+1=FTj-MEj.
vii) Check whether FTj+1 follows the BIMF properties by finding 

the standard deviation (SD), denoted as D, between FTj+1 and 
FTj defined below and comparing it to the desired threshold. 
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where (x,y) is the coordinate, M is the total number of rows 
and N is the total number of columns of the 2D data. 

viii) If FTj+1 meets the criteria as per step (vii), then take Fi=FTj+1;
set Si+1=Si and i=i+1; go to step (ix). Otherwise set j=j+1, go 
to step (iii) and continue up to step (viii). 

ix) Determine if Si has less than three extrema points, and if so, 
the Residue, R=Si; and the decomposition is complete. 
Otherwise, go to step (ii) and continue up to step (ix). 

Let the BIMFs and the Residue of an image together be 
named as bidimensional empirical mode components (BEMCs).  
An orthogonality index (OI), denoted as O, may be defined for the 
BEMCs as below following Ref. [1]. 
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where, Ci is the i-th BEMC, K is the total number of BIMFs and C
is the summation of the BEMCs. A low value of OI indicates a 
good decomposition in terms of local orthogonality.  

     
3. FABEMD ALGORITHM DETAILS 

FABEMD differs from the original BEMD algorithm, basically in 
the process of estimating the upper and lower envelopes and in 
limiting the number of iterations per BIMF to one. Hence the steps 
of the FABEMD algorithm are the same as original BEMD given 
in Section 2 with maximum required value of j equal to one 
considered being sufficient.  

Like BEMD, neighboring window method [2] is employed to 
find the local maxima and minima points. In this method a data 
point is considered as a local maximum (minimum), if its value is 
strictly higher (lower) than all of its neighbors within a window. 
Generally, a 3×3 window results in optimum extrema maps for a 
given 2D data.  

After obtaining the maxima and minima maps, Pj and Qj,
respectively, from a given FTj, it is required to create the 
continuous upper and lower envelopes, UEj and LEj. In usual 
BEMD, suitable 2D scattered data interpolation is applied to Pj and 
Qj to create these envelopes. In this work a simple but efficient 
method has been formulated for this purpose. This approach 
applies two order statistics filters to approximate the envelopes, 
where a MAX filter is used for the upper envelope and a MIN filter 
is used for the lower envelope. The size of these filters are 
determined based on the maxima and minima maps obtained from 
corresponding source image Si, i.e. based on Pj and Qj derived from 
FTj when j=1 and FTj=Si. For each local maximum (minimum) 
point in Pj (Qj), the Euclidean distance to the nearest other local 
maximum (minimum) point is calculated and stored in an array, 
denoted as dadj-max (dadj-min), where the number of elements is equal 
to the number of local maxima (minima) points in the maxima 
(minima) map Pj (Qj). Considering square window, the gross 
window width wen-g for order statistics filters can be selected in 
different ways using the distance values in dadj-max and dadj-min
among which two choices are considered here as given below. 

wen-g = min{min{ }, min{ }}   (3) adj-maxd adj-mind
wen-g = max{max{ }, max{ }}  (4) adj-maxd adj-mind

where, max{} denotes the maximum value of the elements in the 
array {} and min{} denotes the minimum value of the elements in 
the array {}. wen-g is rounded to the nearest odd integer to get the 
final window width wen. Let the order statistics filter widths 
(OSFWs) obtained via Eqs. (3) and (4) be defined as lowest 
distance (LD) and highest distance (HD), respectively. wen required 
for i+1-th BIMF generally appears larger than that for  i-th BIMF if 
using HD OSFW; however, wen for i+1-th BIMF sometimes may 
not appear larger than that for i-th BIMF if using LD OSFW. 
Therefore, if the calculated wen for a BIMF mode is not larger than 
the previous BIMF mode, then additional manipulation may be 
done to make it larger than the previous mode. It will ensure the 
existing properties of BIMF hierarchy in the sense that the later 
BIMF will contain coarser local spatial scales [1,2]. On the other 
hand, wen may be chosen arbitrarily as well. In that case, wen for 
i+1-th BIMF should be chosen higher than the wen for i-th BIMF; 
but extraction of BIMFs will be less data driven with an arbitrary 
selection of wen. The various possibilities of window sizes for MAX
and MIN filters provide different decomposition of an image. This 
feature of variable window size selection makes the proposed 
approach an adaptive one. The choice of wen from the various 

options depends on the application and/or desired BIMF 
characteristics.   

With the determination of window size wen, MAX and MIN
filters are applied to the corresponding IS-BIMF FTj to obtain the 
upper and lower envelopes, UEj and LEj, as specified below. 
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In Eq. (5) the value of the upper envelope UEj at any point (x,y) is 
simply the maximum value of the elements in FTj in the region 
defined by Zxy, where Zxy is the square region of size wen×wen
centered at any point (x,y) of FTj. Similarly, in Eq. (6) the value of 
the lower envelope LEj at any point (x,y) is simply the minimum 
value of the elements in FTj in the region defined by Zxy. To obtain 
smooth continuous surfaces for upper and lower envelopes, 
averaging smoothing operations are carried out on both UEj and LEj,
which may be expressed as below.  
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where Zxy is the square region of size wsm×wsm centered at any point 
(x,y) of UEj or LEj, wsm is the window width of the averaging 
smoothing filter and wsm=wen. From the smoothed envelopes, UEj
and LEj, the mean or average envelope MEj is calculated as in the 
original BEMD method given in Section 2.  

To illustrate the envelope formation for FABEMD, let us 
consider a 1D signal for simplicity, given in Fig. 1. The local 
maxima and minima points for this signal are obtained using a 1×3 
neighboring window, which gives dadj-max=[107  106  93  93  72] 
and dadj-min=[108  107  93  93  78]. Using these distance arrays, LD 
and HD OSFWs appear to be 73 and 109, respectively. Taking HD 
OSFW (wen=wsm=109) as the width of the MAX or MIN filter and 
applying them to the maxima and minima maps results in the UE, 
LE and ME shown in Fig. 1(a). The corresponding envelopes after 
applying averaging smoothing filter are displayed in Fig. 1(b), and 
the same envelopes created by applying cubic spline interpolation 
(CSI) [1] to the maxima and minima maps are given in Fig. 1(c). 
The top waveforms in Figs. 2(a) and 2(b) are the original 1D signal 
given in Fig. 1, whereas the bottom waveform in Fig 2(a) is the 
result of ME subtraction in FABEMD method and the bottom 
waveform in Fig. 2(b) is the result of ME subtraction in BEMD 
method. This illustration demonstrates that the proposed approach 
of envelope estimation in FABEMD can be a suitable alternative to 
regular envelope estimation using interpolation in BEMD.  

4. SIMULATION RESULTS 

FABEMD results are reported for both LD and HD OSFWs and for 
one and more than one iterations. On the other hand, BEMD results 
are shown for thin-plate spline (TPS) interpolation, which is a good 
choice for BEMD [3-5]. SD criterion is employed as the 
fundamental stopping criteria with a threshold of 0.01 while the 
maximum number of allowable iterations (MNAI) is applied as an 
additional stopping criterion for BEMD. In the simulation, the 
maximum image size is limited to 256×256-pixel. Although 
FABEMD is capable of decomposing images of any size or 
resolution very fast, BEMD is unable to do so. Since FABEMD 
results are compared with BEMD results for the same images, 
256×256-pixel images help perform the task conveniently.  
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(a)  (b)  (c) 

Fig. 1. A 1D signal and its envelopes using (a) FABEMD before 
smoothing, (b) FABEMD after smoothing, (c) BEMD with CSI. 

 (a)   (b) 

Fig. 2. (a) Original signal (top) and mean envelope subtracted 
signal using FABEMD algorithm, (b) Original signal (top) and 

mean envelope subtracted signal using BEMD algorithm.  

A synthetic texture image (STI) shown in Fig. 3(d) is 
considered first, which is derived from the addition of three 
components (STCs) given in Figs. 3(a), 3(b) and 3(c). The BEMCs 
of the STI obtained by applying FABEMD with HD-OSFW are 
displayed in Fig. 4 for MNAI=1 and in Fig. 5 for MNAI=5. 
Similarly, the BEMCs of the STI obtained by applying BEMD with 
RBF-TPS are displayed in Fig. 6 for MNAI=1 and in Fig. 7 for 
MNAI=5. Table 1 displays the number of obtained BEMCs, time 
taken and OI; while Table 2 shows the stopping point SD for each 
BIMF for each method considered. From the visual and 
quantitative evaluation, FABEMD with HD-OSFW for MNAI=1 
appears to be a good choice for decomposition of the STI in Fig. 
3(d).

(a)   (b)       (c)          (d) 

Fig. 3. (a) STC-1, (b) (STC-2, (c) STC-3, (d) Original synthetic 
texture image (STI) obtained from addition of (a) to (c).  

Fig. 4. BEMCs of the STI obtained by FABEMD with HD OSFW 
(MNAI=1).  

Fig. 5. BEMCs of the STI obtained by FABEMD with HD OSFW 
(MNAI=5).  

Fig. 6. BEMCs of the STI obtained by BEMD with RBF-TPS 
(MNAI=1). 

Fig. 7. BEMCs of the STI obtained by BEMD with RBF-TPS 
(MNAI=5). 

Table 1. Comparison among various BEMD approach for the STI 
in terms of total number of BEMCs, total time required and OI. 

FABEMD BEMD
HD-

OSFW 
MNAI=1 

HD-
OSFW 

MNAI=5 

RBF-TPS
MNAI=1 
D=0.01

RBF-TPS
MNAI=5 
D=0.01

Total BEMC 3 4 4 4
Time (Sec) 14.6986 446.6392 205.5114 975.3234

OI 0.0342 0.0581 0.0988 0.664

Table 2. Comparison among various BEMD approach for the STI 
in terms of achieved stopping point SD for each BIMF. 

FABEMD BEMD
HD-OSFW 
MNAI=1 

HD-OSFW 
MNAI=5 

RBF-TPS
MNAI=1 
D=0.01

RBF-TPS
MNAI=5 
D=0.01

BIMF-1 0.98159 0.02355 0.98337 0.00673
BIMF-2 0.99306 0.02875 0.99189 0.01256
BIMF-3 - 0.03691 0.90914 0.01664

Two real images are considered next, which are a 256×256-
pixel region of a real texture image, D18, taken from the Brodatz 
texture set and shown in Fig. 8(a) [9]; and a sub-sampled 256×256-
pixel Elaine image shown in Fig. 8(b). The BEMCs generated from 
the D18 image and Elaine image by applying FABEMD with LD-
OSFW and MNAI=1 are shown in Figs. 9 and 11, respectively. On 
the other hand, the BEMCs generated from these same images by 
applying BEMD with RBF-TPS interpolation and MNAI=10 are 
shown in Figs. 10 and 12, respectively. It is obvious from the 
simple visual evaluation of the BEMCs of real images that 
FABEMD yields very well defined BEMCs that represent the 
image features at various spatial scales similar to or better than the 
BEMCs obtained from the BEMD method. 

(a) (b)

Fig. 8. (a) A 256×256-pixel region of Brodatz texture D18 [9], (b) 
256×256-pixel Elaine image. 
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Fig. 9. BEMCs of D18 image obtained by FABEMD with LD-
OSFW (MNAI=1). 

Fig. 10. BEMCs of D18 image obtained by BEMD with RBF-TPS 
(MNAI=10). 

Fig. 11. BEMCs of Elaine image obtained by FABEMD with LD-
OSFW (MNAI=1). 

Fig. 12. BEMCs of Elaine image obtained by BEMD with RBF-
TPS (MNAI=10). 

Unwanted distortion and other artifacts may accompany the 
BEMCs when obtained via BEMD, which is apparent from the 
above figures of BEMCs. Envelope estimation in FABEMD, 
employing order-statistics filters, is nearly independent of the 
image or texture pattern in terms of complexity and processing 
time; and the envelopes closely follow the image. But, envelope 
estimation in the BEMD method, employing surface interpolation, 
is highly dependent on the maxima or minima maps while the 
envelopes are not guaranteed to follow the image. For real images, 
the time taken by BEMD is extremely higher than that required by 

FABEMD. While FABEMD takes only a few minutes, BEMD 
takes many hours, even for a very few iterations performed per 
BIMF. This problem hinders the application of BEMD in many 
practical cases.  

5. CONCLUSION 

To enhance BEMD for image processing applications, a fast, time 
efficient and effective method is essential. This fact motivated the 
formulation of the proposed fast and adaptive BEMD, abbreviated 
as FABEMD. In FABEMD, the envelope estimation method of 
regular BEMD is modified by replacing the 2D surface 
interpolation by an order-statistics based filtering followed by a 
smoothing operation. A number of window sizes can be selected 
for the order-statistics and smoothing filters, all of which are data 
driven and thus making the process adaptive. The simple change in 
the envelope estimation procedure provides a tremendous 
enhancement of the algorithm in terms of computation time. 
Simulation results demonstrate the usefulness of this novel 
FABEMD approach for BEMD based image decomposition. 
Besides reducing the computation time, this novel approach also 
ensures a more accurate estimation of the BIMFs in some cases.  
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