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ABSTRACT

A novel context enhancement technique is presented to automati-
cally combine images of the same scene captured at different times
or seasons. A unique characteristic of the algorithm is its ability
to extract and maintain the meaningful information in the enhanced
image while recovering the surrounding scene information by fus-
ing the background image. The input images are first decomposed
into multiresolution representations using the Dual-Tree Complex
Wavelet Transform (DT-CWT) with the subband coefficients mod-
elled as Cauchy random variables. Then, the convolution of Cauchy
distributions is applied as a probabilistic prior to model the fused
coefficients, and the weights used to combine the source images are
optimised via Maximum Likelihood (ML) estimation. Finally, the
importance map is produced to construct the composite approxima-
tion image. Experiments show that this new model significantly im-
proves the reliability of the feature selection and enhances fusion
process.

Index Terms— context enhancement, image fusion, surveillance,
Cauchy distribution, wavelet decompostion.

1. INTRODUCTION

Context enhancement (CE) is used in numerous applications such as
surveillance and civilian or military image processing. Context en-
hancement aims to detect, recognize and track objects such as people
and cars from the image while being aware of the existing surround-
ings. Moreover, CE helps analyse background information that is
essential to understand object behaviour without requiring expensive
human visual inspection. One way of achieving context enhance-
ment is fusing a low quality image (i.e., foreground image) and a
high quality image (i.e., background image) at the same viewpoint.
However, extracting the important features from the foreground im-
age and combining them efficiently with the environmental context
from the background image still remains a challenging problem.
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Research and Technology under program EΠAN, Code 131-γ.

In past decades, there has been considerable interest in combin-
ing source images through weighted averaging in the wavelet domain
[1, 2, 3]. For example, Burt and Kolczinski [1] presented an image
fusion algorithm which calculates a normalised correlation between
the two images’ subbands over a small local area. The fused coeffi-
cients arise from the local variance via a weighted combination of the
two images’ coefficients. Achim et al. [2] derived a fusion approach
using fractional lower order moments as a weight estimator to fuse
the input images. In previous work [3], we developed a fusion algo-
rithm based on generalized Gaussian distributions (GGD), in which
the Shannon entropy is used to produce the weights to synthesize the
fused detail and approximation images. Recently, a statistical fusion
method employing Independent Component Analysis (ICA) was in-
troduced in [4]. The method involves computing the combination
weights via Laplacian and Verhulstian priors.

In this paper, we propose a new image fusion technique based on
Cauchy convolution where the combination weights are optimised
through ML estimation. We demonstrate that, compared with pre-
vious methods, our algorithm has a number of advantages. First,
by using convolution of Cauchy models, we are able to develop a
generative model where the distribution of the fused subband is de-
termined by the distributions of the input subbands. Thus, the new
model leads to a more accurate and reliable optimisation process in
comparison with Laplacian and Verhulstian models in [4] that do
not take into account any assumption about the input images. More-
over, the applied dual-tree complex wavelet transform [5] provides
near shift invariance and good directional selectivity while preserv-
ing the usual properties of perfect reconstruction and computational
efficiency. As a result, the overall algorithm performs in a near-
optimal way to enhance the perceptive quality of the fused images.

The rest of the paper is organized as follows. In Section 2, a
framework for weighted average fusion is described. Section 3 pro-
vides a brief introduction on the convolution of Cauchy distributions.
A novel optimisation approach using the Cauchy convolution and
experimental results are presented in Section 4 and Section 5, re-
spectively. Finally, conclusions are made in Section 6.
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(a) (b) (c) (d) (e)

Fig. 1. Enhancement process. (a) Original daytime image. (b) Original nighttime image. (c) Nighttime image importance map. (d) Daytime
image weight map. (e) Nighttime image weight map. Bright colour indicates the high values, and dark colour indicates the low values.

2. WEIGHTED AVERAGE FUSION

The weighted average image fusion algorithm consists of two main
components. First, the detailed wavelet coefficients are composed
using weighted combination:

DF = w1D1 + w2D2, (1)

where D1 and D2 are the wavelet coefficients of two source images,
and DF are the composite coefficients. w1 and w2 are the weights
for these two input images, respectively.

Because of their different physical meaning, the approximation
and detail images are usually treated by the combination algorithm
in different ways. As we deal with the asymmetrical fusion in which
the salient objects are from the foreground image and the surround-
ing context is from the reference background image, a better option
is to give more importance to the regions of interest in the foreground
image. This is to make sure that no information in the foreground
image is lost in the enhanced image. The importance map, which is
used to detect salient objects, is calculated based on the Cauchy pa-
rameter γ estimated on the foreground image, as shown in Fig.1(c).
A preliminary version of this method has been already reported in
[6]. Hence, the composite approximation image AF can be com-
puted by:

AF = IA1 + (1 − I)A2, (2)

where I is the importance map of which the values are constrained
between 0 to 1. Finally, the fused image is obtained by taking an
inverse wavelet transform.

3. CONVOLUTION OF CAUCHY DISTRIBUTIONS

The Cauchy distribution is a member of the alpha-stable family for
modelling heavy-tailed non-Gaussian behaviour. Unlike alpha-stable
distributions which lack a compact analytical expression for their
probability density function (PDF), the Cauchy model has the PDF:

P (x; μ, γ) =
1

π

[
γ

(x − μ)2 + γ2

]
, (3)

where μ (−∞ < μ < ∞) is the location parameter, specifying
the location of the peak of the distribution, and γ (γ > 0) is the
dispersion of the distribution that determines the spread of the distri-
bution centered on μ. According to the stability property of alpha-
stable distributions for the particular case of the Cauchy density [7],
the class of Cauchy distributions is closed under convolution. For
example, if two independent random variables X1 and X2 follow
Cauchy distributions with parameters (μ1, γ1) and (μ2, γ2), respec-
tively, then the random variable Y = X1 + X2 follows the con-
volution of the distributions of X1 and X2, which is also a Cauchy

distribution:

P (y; μ, γ) = P (x; μ1, γ1) ∗ P (x; μ2, γ2)
= P (x; μ1 + μ2, γ1 + γ2).

(4)

More generally, it can be shown [8] that the distribution of a
weighted sum of two independent Cauchy random variables, Z =
w1X1+w2X2, also follows the Cauchy distribution with parameters
μ and γ defined as:

μ = w1μ1 + w2μ2, γ = w1γ1 + w2γ2. (5)

In this paper, we assume that there are two input images, which
are decomposed in the wavelet domain. Z represents the weighted
combination of the two source images, where X1 and X2 are their
corresponding wavelet coefficients. By using convolution of the two
distributions, the proposed model is able to take into account the
local characteristics contained in both images.

4. OPTIMISING WEIGHTS VIA CAUCHY CONVOLUTION

In this section, we introduce a new statistical optimisation approach
combining the wavelet transform with the convolution of Cauchy
distributions, in which the distributions of input images are consid-
ered. Wavelets have emerged as an effective tool to analyse texture
feature due to its energy compaction property. It has been pointed out
that the wavelet transforms of real-world images tend to be sparse,
resulting in a large number of small coefficients and a small num-
ber of large coefficients [9]. The problem of fusion can be posed
as an optimisation problem of estimating appropriate combination
weights, so that the enhanced image highlights salient information
from the low quality image, while fusing the background scene smo-
othly. It makes sense to assume that the fusion process maximizes
the sparsity of the resulting image in the wavelet domain, which em-
phasizes the existence of strong coefficients in the transform, whilst
suppressing small values. This should enhance the visual quality of
the fused images [4].

4.1. Optimisation Scheme

The proposed method aims to investigate an optimisation algorithm
and develop a new methodology for image enhancement applica-
tions. The approach intends to maximize the cost function derived
from the convolution of Cauchy distributions. The optimal weights
determine how much each individual source image contributes into
the fused image.

We assume that the distributions of wavelet coefficients corre-
sponding to the input images are modelled by Cauchy distributions.
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Thus, the distribution of weighted sum of wavelet coefficients can be
derived from the Cauchy convolution. The PDF is given below:

P (x; μ, γ) =
1

π

[
w1γ1 + w2γ2

(x − w1μ1 − w2μ2)2 + (w1γ1 + w2γ2)2

]
,

(6)
where (μ1, γ1) and (μ2, γ2) are the model parameters from the dis-
tributions of input subbands, while w1 and w2 are the weights of the
two source images, respectively.

The likelihood expression for Maximum Likelihood estimation
is L =− log(P (x; μ, γ)). ML estimation can be performed by max-
imizing the cost function [4]:

C(w1, w2) = E[L], (7)

where the weights w1 and w2 remain always positive and they sum
up to one, and E[·] is the expectation function. The optimal weights
are obtained when they give the maximum value to (7). After a few
straightforward transforms, the partial derivatives on (7) with respect
to w1 and w2 are:⎧⎨

⎩
∂C(w1,w2)

∂w1
= E{− γ1

γ
+

2Q(x1−μ1)+2γ1γ2w2+2γ2
1w1

(x−μ)2+γ2 }
∂C(w1,w2)

∂w2
= E{− γ2

γ
+

2Q(x2−μ2)+2γ1γ2w1+2γ2
2w2

(x−μ)2+γ2 }
(8)

with
Q = (x1 − μ1)w1 + (x2 − μ2)w2, (9)

where x1 and x2 are the wavelet coefficients of the input images,
while γ and μ are the model parameters defined in (5). The ML esti-
mation can be implemented through the steepest ascent method. By
using the instantaneous estimation of the expectation, the updating
procedures are simplified as:⎧⎨

⎩
w1,k+1 = w1,k + η

∂C(w1,k,w2,k)

∂w1,k

w2,k+1 = w2,k + η
∂C(w1,k,w2,k)

∂w2,k
,

(10)

where k refers to the iterating index and η is the learning rate. In
this paper, η is assigned with 0.05. The above update rule is applied
until the stopping criterion reaches:

max{‖wi,k+1 − wi,k‖} ≤ ε i = 1, 2 (11)

where ε is the value of the error threshold. It must be very small
(e.g., 0.001). Fig.1(d) and 1(e) show an example of the weight maps
of the daytime and nighttime images. As it can be seen, the desir-
able features within both images are well extracted by the proposed
statistical model.

4.2. Parameter Estimation

In order to estimate the parameters from wavelet coefficients, a method
based on log absolute moment has been proposed in [10]. In our
work, the method is used in a square-shaped neighborhood of size
7 × 7 for each reference coefficient:

X = log[|Dj(x, y)|] (x, y) ∈ W, (12)

where W refers to the 7 × 7 window, and Dj(x, y) is the detail
coefficient in the jth subband at location (x, y). It can be shown
[10] that the derived equation is given by:

γ̂ = exp(E[X]). (13)

Since our developments are in the framework of wavelet analysis,
we assume that the location parameter μ = 0 for the simplified case.

In contrast with the method reported in [4], which updated the
model parameters in each iteration of optimising the weights, the
proposed method only updates the parameters once. The updated
parameters then will be used through all the iterations. This leads to
a computationally more efficient optimisation process.

5. EXPERIMENTAL RESULTS AND DISCUSSIONS

Subjective tests and objective measurements are used for qualita-
tively and quantitatively assessing the performance of the proposed
methodology. In many applications, the human perception of the
fused image is of paramount importance. Therefore, we choose
multi-time and multi-season images, apply the algorithm, and visu-
ally evaluate the enhanced image in comparison with the previously
proposed fusion methods, including the weighted average (WA) met-
hod [1], and the fusion approach by making use of fractional lower
order moments (FLOM) [2]. We also implemented Mitianoudis and
Stathaki’s method [4] for Cauchy and GGD models but applied in the
wavelet domain instead of ICA bases for the sake of fair comparison.

The first example (see Fig.2) shows an outdoor scene combined
from a daytime image (Fig.1(a)) and a nighttime image (Fig.1(b)).
The proposed method achieves improved performance by success-
fully providing context to dark images while reducing blocking arte-
facts which obviously appear around the edge of the building in
Fig.2(b) and 2(c). As a second example, we choose to illustrate
the fusion of two natural images captured under different seasons
from the same view. Fig.3(c) shows that the resulting image us-
ing Cauchy convolution not only preserves useful features, but also
maintains smooth transition from background to foreground com-
pared with other fusion schemes. The proposed method seems to
balance between the details and the different contrast information
that exists in the input images.

An objective evaluation criterion should also be applied to com-
pare results obtained using different algorithms. A quality metric
which does not require a ground-truth was proposed by Piella and
Heijmans [11] in which the important edge information is taken into
account to evaluate the relative amount of salient information con-
veyed into the fused image. We use their defined criterion to evalu-
ate the fusion performance. The results are shown in Table 1, which
indicate that the proposed algorithm obtains the higher evaluation
values compared with the Cauchy and GGD priors except for the
multi-season images when the WA scheme is rated highest. It in-
dicates that the WA method intends to preserve most of the edge
information. However, it may cause distortions that make the final
image look inferior perceptually.

6. CONCLUSIONS AND FUTURE WORK

We have proposed a novel context enhancement method using con-
volution of Cauchy distributions in the wavelet domain. The salient
features contained in the input images are captured and modelled
by Cauchy distributions, and the fused coefficients are obtained by
maximizing the cost function derived from the Cauchy convolution
that takes into account this important information. Maximum like-
lihood estimation is used to calculate the weights thus leading to an
optimised fusion process. The main contribution of this work that
it provides a precise and robust statistical model to perform an au-
tomatic context enhancement task. Future work will concentrate on
combining our optimisation method with higher-complexity fusion
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Fig. 2. Fusion for multi-time images. (a) Image fused using Cauchy
convolution. (b) Image fused using WA scheme. (c) Image fused
using FLOM rule. (d) Image fused using Cauchy prior. (e) Image
fused using GGD prior.

rules and extending the proposed algorithm to the general case of
symmetric alpha-stable (SαS) distributions.

Table 1. Performance comparisons using Piella’s metric [11]

Example Methods

WA FLOM GGD Cauchy Convolution

multi-time 0.8211 0.8166 0.7695 0.7779 0.8293

multi-season 0.7659 0.7514 0.6956 0.7147 0.7588

7. REFERENCES

[1] P.J. Burt and R.J. Kolczynski, “Enhanced image capture
through fusion,” in Proc. of Fourth Int. Conf. Comp. Vis., 1993,
pp. 173–182.

[2] A. M. Achim, C. N. Canagarajah, and D. R. Bull, “Complex
wavelet domain image fusion based on fractional lower order
moments,” in Proc. Int. Conf. Inform. Fus., vol. 1, p. 515.

[3] Tao Wan, Nishan Canagarajah, and Alin Achim, “Region-
based multisensor image fusion using generalized gaussian dis-
tribution,” in Int. Workshop on Nonlinear Sign. and Image Pro-
cess., Sep. 2007.

[4] Nikolaos Mitianoudis and Tania Stathaki, “Adaptive image fu-
sion using ICA bases,” in IEEE Conf. Acoustics, Speech, and
Signal Process., May. 2006, vol. 2, pp. 829–832.

[5] N. Kingsbury, “Complex wavelets for shift invariant analysis
and filtering,” Appl. Compt. Harmon. Anal., vol. 10, pp. 234–
253, May 2001.

(a) (b)

(c) (d)

(e) (f)

(g)

Fig. 3. Fusion for multi-season images. (a) Original spring image.
(b) Original winter image. (c) Image fused using Cauchy convo-
lution. (d) Image fused using WA scheme. (e) Image fused using
FLOM rule. (f) Image fused using Cauchy prior. (g) Image fused
using GGD prior.

[6] T. Wan, N. Canagarajah, and A. Achim, “Multiscale color-
texture image segmentation with adaptive region merging,” in
IEEE Conf. Acoustics, Speech, and Signal Process., Apr. 2007,
vol. 1, pp. 1213–1216.

[7] C. L. Nikias and M. Shan, Signal Processing with Alpha-Stable
Distributions and Applications, John Wiley and Sons, New
York, 1995.

[8] Colin R. Blyth, “Convolutions of cauchy distributions,” The
American Mathematical Monthly, vol. 93, no. 8, pp. 645–647,
Oct. 1986.

[9] S. Mallat, “A theory for multiresolution signal decomposition:
The wavelet representation,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 11, no. 7, pp. 674–692, Jul. 1989.

[10] X. Ma and C. L. Nikias, “Parameter estimation and blind
channel identificaition in impulsive signal environment,” IEEE
Tran. Sign. Proc., vol. 43, pp. 2884–2897, Dec. 1995.

[11] Gemma Piella and Henk Heijmans, “A new quality metric for
image fusion,” in Proc. IEEE Conf. Image Process., 2003,
vol. 2, pp. 173–176.

1312


