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ABSTRACT

We address problems of conventional super-resolution (SR) meth-
ods having the following limitations. First, most of the existing SR
algorithms can not cope with local motions and hence not suitable
for video sequences. Second, the blurring operator is assumed to
be known in advance and constant for all the low-resolution (LR)
images. Finally, SR noise is assumed to be either Gaussian or Lapla-
cian. To solve these problems, we propose a general cost function
that consists of weighted L1- and L2-norms considering the SR noise
model where the weights are generated from the error of registration
and penalize parts that are inaccurately registered. Both the super-
resolved images and blurring operators are jointly estimated. The
objective and subjective results are shown to demonstrate the effec-
tiveness of the proposed algorithm.

Index Terms— Super-resolution, image fusion, image registra-
tion, mixed-norm, affine motion, outlier rejection

1. INTRODUCTION

Super-resolution is an approach to obtain high-resolution (HR) im-
age(s) from a set of low-resolution images. The most important steps
of SR algorithms are image registration, data fusion, and restoration.
Image registration, which has been paid much attention for the last
two decades, is the process to align images (frames) to the reference
image (frame) [1]. However, image registration of images contain-
ing locally moving parts is still a challenging task. Data fusion is the
process which fuses the registered images onto HR grid. Restoration
is the process to estimate the HR image from the fused data on the
HR grid.

In most of the recently proposed SR algorithms [2–4] the SR
results depend on fusion step. As a cost function, the L2- or L1-norm
is used to fuse LR images [2–6]. It can be seen [3] that the choice of
norm depends on the distortion assumption of fusion error: whether
the error is Gaussian (L2-norm [2, 4]) or Laplacian (L1-norm [3]).
It should be noted that the use of L2-norm implicitly assumes that
the extra resolution content is equally distributed over all LR images
[2]. Then the resulting HR image is an average of the contributions
from all LR images. This implies that the averaging process leads to
propagation of the outlier pixels from any of the LR images into the
HR image. To avoid this averaging effect, the use of global weight
for each image has been proposed [4, 5]. Although these methods
can be suitable with global motion, they indeed fail with sequences
that include moving objects.
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On the other hand, it is known that L1-norm is robust against
outliers [3]. It can not however cope with errors resulting from oc-
clusion that happens in video sequences that contain local motions.
The failure in the case of occlusion is due to two reasons. First, in
video sequences that have local and fast motions, Laplacian distri-
bution assumption is not proper. Second, the model converges to
the median over the measured data without pre-weighting the LR
images, which may lead to failure in the case of occlusion.

On the context of image restoration, a weighted L2-norm has
been also proposed [7], in which weighted and regularized L2-norm
is used to restore one frame from a set of K blurred frames. Actually,
this is a special case of the SR where decimation factor is one [7].
Another suggestive idea in image restoration is the use of a mixed-
norm [8], where second and fourth norms are combined for image
restoration. The relative importance of LMS and least mean fourth
(LMF) is used as a function of the kurtosis of the noise. This algo-
rithm also represents a special case of SR algorithms since only one
frame is used to restore an enhanced frame with the same dimen-
sions.

In summary, the main problems of the previous SR algorithms
are as follows. Most of these algorithms [2–6] assume global motion
so they are not suitable for video sequences including locally mov-
ing parts. Also, they assume that blurring operator is known. More-
over, even if L2-norm is suitable for Gaussian noise and L1-norm
is suitable for Laplacian noise, non of them can cope with mixed
noise distributions. Motivated by these problems and previous image
restoration methods [7, 8], we propose a robust method that simul-
taneously estimates a blurring matrix and a high resolution image in
the presence of the local registration errors by global motion estima-
tion technique. To do that, we introduce a globally weighted average
of locally weighted L2- and L1-norms as a cost function, where the
global weights penalize the SR noise distribution model and the lo-
cal weights penalizes the local registration error. The global weight
is determined in the basis of the SR noise distribution function and
the local weighting function is chosen so as to be a function of the
local registration error between the reference LR frame and the other
LR frames.

2. PROBLEM DESCRIPTION AND NOTATION

Assume that K LR frames of the same scene in lexicographical order
denoted by Yk(1 ≤ k ≤ K), each containing M2 pixels, are observed,
and they are generated from the HR frame denoted by X, containing
L2 pixels, where L ≥ M. We use the underscore notation to indi-
cate a vector. The observation of K LR frames are modeled by the
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following degradation process:

Yk = DBkFkX + Vk, (1)

where Fk, Bk and Dk are the motion operator, the blurring operator
(due to camera), and the down-sampling operator respectively, X is
the unknown HR frame, Yk is the kth observed LR frame, and Vk is
an additive random noise for the kth frame. Throughout the paper, we
assume that D is known and the additive noise is Gaussian with zero
mean. Therefore the problem is to reconstruct HR image (X) while
estimating blurring operators (Bk) and motion operators (Fk). Due to
the fact that motion operator is not known, it will be estimated from
the successive frames. Motion estimation is not always accurate then
the estimated motion operator can be described as Fk + ΔFk, where
ΔFk is the registration error matrix, so the degradation model in (1)
can be described as

Yk = DBkFkX + DBkΔFkX + Vk = DBkFkX + Ṽ
k
, (2)

where Ṽ
k

is the combination of additive noise and motion error. In
this paper, we assume the blurring operation as moving averaging as
BkX =

∑ρ
l=−ρ
∑ρ

m=−ρ bl,m,kS l
xS

m
y X, where bl,m,k(−ρ ≤ l,m ≤ ρ) are the

coefficients of the blurring operator and S l
x and S m

y are shifting oper-
ators by l and m pixels in x and y direction respectively. Throughout
the rest of the paper we will use Bk and

∑ρ
l=−ρ
∑ρ

m=−ρ bl,m,kS l
xS

m
y in-

terchangeably.

3. SR BASED ON WEIGHTED MIXED-NORM

In [6], we showed that Ṽ
k

is suitable to be described as Laplacian
in case of slow (global) motions where accurate motion estimation
is possible while in case of fast (local) motion it is suitable to be
modeled by Gaussian. Based on these results we propose to use a
weighted average of L2- and L1-norms where the global weights are
adaptive with respect to error distribution. Two types of weighting
functions are introduced, the first is locally adaptive with respect to
the registration error and the second is globally adaptive with respect
to error distribution. Hence by using a general regularization term,
the proposed cost function is described as follows:

J(X, B) =

K∑
k=1

[
ζk

2(X)
∥∥∥DBkFkX − Yk

∥∥∥2
Wk

2

+

ζk
1(X)
∥∥∥DBkFkX − Yk

∥∥∥1
Wk

1

]
+ λ(X, B)

∥∥∥CX
∥∥∥p

p

(3)

where ζk
1(X) and ζk

2(X) are the global weights, Wk
1 and Wk

2 are the
local weights, C is a general high pass operator, and λ(X, B) is the
regularization factor.

3.1. Choice of Global Weights

The global weights are introduced in Eq. (3) to adjust the relative
importance of the contributions of L1- and L2- norms. It is de-
sired from these weights that in cases of Gaussian noise the con-
tribution of L2-norm increases and that of L1-norm decreases, while
in cases of Laplacian noise the contribution L2-norm decreases and
the contribution of L1-norm increases. On the other hand, for cases
of mixed noise these weights should adjust the relative importance
on Gaussian and Laplacian. To achieve that, we propose to use
global weights that are function of the generalized likelihood ratio
test (GLRT) value of the SR noise [3] since it has a large value
(> 0.7602) for Gaussian while it has smaller value (< 0.7602) for

Laplacian. Also, to avoid the different scale of the L1- and L2-
norms we use a normalization with respect to the regularization func-
tion [4]. ζk

1(X) and ζk
2(X) are defined as

ζk
1(X) = ξ1(X) ln

⎛⎜⎜⎜⎜⎝T k
1 (X) · ‖CX‖22

‖DBkFkX − Yk‖1
1

+ 1

⎞⎟⎟⎟⎟⎠ ,

ζk
2(X) = ξ2(X) ln

⎛⎜⎜⎜⎜⎝T k
2 (X) · ‖CX‖22

‖DBkFkX − Yk‖2
2

+ 1

⎞⎟⎟⎟⎟⎠ ,
where

T k
1 (X) =

∑K
i=1‖DBiFiX − Yi‖1
‖DBkFkX − Yk‖1

, T k
2 (X) =

∑K
i=1‖DBiFiX − Yi‖22
‖DBiFkX − Yk‖2

2

,

with ξ1(X) and ξ2(X) being the average of λk
1(X) (1 ≤ k ≤ K) and

λk
2(X) (1 ≤ k ≤ K) over the K frames respectively, where λk

1(X) and
λk

2(X) are defined as follows:

λk
1(X) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0.5e−

∣∣∣GLRTk(X)−0.7602

∣∣∣
, if GLRTk(X) ≥ 0.7602

1 − 0.5e−
∣∣∣GLRTk(X)−0.7602

∣∣∣
, if GLRTk(X) < 0.7602

, (4)

and λk
2(X) = 1 − λk

1(X), where GLRTk(X) is the GLRT(X) of the
errors at kth frame.

3.2. Choice of Local Weights

To overcome the errors resulting from inaccurate registration, we
propose to use local weights for both L2- and L1-norms. Weighted
L1- and L2-norms for vector X of size N are defined as

||X||W2
=
(
XT W2X

)1/2
, ||X||W1

=

N∑
i=1

W1(i, i)|X(i)|,

respectively, where W1 and W2 are diagonal matrices with non-negative
components. To use these norms in (3), the local weights can be
adaptive with respect to the registration error as follows

Wk
2 (i, i) = e−

∣∣∣Yk(i)−(Fk
↓Y

re f )(i)
∣∣∣
, (5)

where Wk
2 is the weighting matrix of size M2 × M2 for L2-norm at

kth frame, Yre f is the reference LR frame in lexicographical order,
and Fk

↓ is the motion operator in the LR domain corresponding Fk in

HR domain. The weighting matrix for L1-norm at kth frame (Wk
1 ) is

chosen as a logic version of Wk
2 , that is,

Wk
1 (i, i) =

⎧⎪⎪⎨⎪⎪⎩1 if Wk
2 (i, i) < θ(i)

0 otherwise
, (6)

where θ(i) is chosen as θ(i) = 1
K

∑K
k=1 Wk

2 (i, i).

3.3. Alternative Minimization

The optimization of J(X, B) is performed with respect to X and bl,m,k

alternatively. The gradients of J(X, B) with respect to X may be
approximated by

∇X J(X, B) �
K∑

k=1

FkT
BkT

DT
(
2 · ζk

2(X)Wk
2 (DBkFkX − Yk)+

ζk
1(X)Wk

1sign(DBkFkX − Yk)
)
+ λ(X, B)CT CX,
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where we assume that the gradient of the weighs ζk
1(X) and ζk

2(X)
with respect to X is negligible with respect gradients of the L1- and
L2-norms. The gradient of J(X, B) with respect to bl,m,k is given by

∇bl,m,k J(X, B) = XT FkT
S −m

y S −l
x DT

⎛⎜⎜⎜⎜⎜⎜⎝2 · ζk
2(X)Wk

2 (

ρ∑
l=−ρ

ρ∑
m=−ρ

bl,mDS l
xS

m
y FX

−Yk) + ζk
1(X)Wk

1sign(

ρ∑
l=−ρ

ρ∑
m=−ρ

bl,mDS l
xS

m
y FX − Yk)

⎞⎟⎟⎟⎟⎟⎟⎠ .
The steepest decent updating equations for HR image (X) and blur-
ring coefficients (bl,m,k) can be given as

X(n+1) = X(n) − β(n)
X ∇X(n) J(X, B), b(n+1)

l,m,k = b(n)

l,m,k − β(n)
B ∇b(n)

l,m,k
J(X, B),

where X(n) and b(n)

l,m,k are X and bl,m,k at the nth iteration respectively.
At each iteration, the blurring coefficients are constrained to be bi-
symmetric, non-negative, and unit-sum.

3.4. Adaptive Regularization and Step Size

The regularization parameter, λ(X, B), controls the trade-off between
fidelity to the data and smoothness of the solution. The following
choice of the regularization parameter [9] can be useful:

λ(X, B) = τ

⎡⎢⎢⎢⎢⎢⎣
K∑

k=1

{
ζk

2(X)‖DBkFkX − Yk‖2W2

+ζk
1(X)‖DBkFkX − Yk‖1W1

}
+ λ(X, B)‖CX‖pp

]
,

(7)

implying

λ(X, B) =

∑K
k=1

{
ζk

2(X)‖DBkFkX − Yk‖2W2
+ ζk

1(X)‖DBkFkX − Yk‖1W1

}
1/τ − ‖CX‖pp ,

where τ is chosen so that λ(Xn, Bn) is nonnegative; therefore it can
be chosen as [8] 1

τ
≥ ||CX||22 = ||C||22||X||22 ≥ ||X||22.

The step size β(n)
X and β(n)

B are calculated by minimizing the cost

function J(X(n+1), B(n)) = J(X(n)−β(n)
X ∇X(n) J, B(n)) and J(X(n), B(n+1)) =

J(X(n), B(n)−β(n)
B ∇B(n) J) with respect to β(n)

X and β(n)

Bk respectively. Then

β(n)
X and β(n)

Bk are obtained as β(n)
X = A(n)/B(n), where

A(n) =

K∑
k=1

ζk
2(X(n))(∇X(n) J)T FkT

BkT
DT Wk

2 (DBkFkX(n) − Yk)

+ λ(X(n), B)(∇X(n) J)T CT CX(n),

B(n) =

K∑
k=1

ζk
2(X(n))(∇X(n) J)T FkT

BkT
DT Wk

2 DBkFk∇X(n) J

+ λ(X(n), B)(∇X(n) J)T CT C∇X(n) J,

and

β(n)

Bk =
FkT BkT DT (DBkFkX(n) − Yk)

∇b(n)
l,m,k

JFkT BkT DT (DBkFk∇X(n) J)
.

4. SIMULATION RESULTS AND DISCUSSION

For the test, we generated the LR frames by following the observa-
tion model as in Eq. (1), where frames are blurred by Gaussian op-
erator (5 × 5) with different variance for each frame, down-sampled

by 1 : 2 in each direction, and then distorted by an additive white
Gaussian noise with signal-to-noise ratio equal to 30 dB. Motion is
estimated using six parameters affine model [1]. Moreover, for all
the compared models, we used the same regularization technique,
where the bilateral total variation is used. L2-norm (p = 2) is used in
the regularization weighted L2-norm [5, 6] and the proposed model,
while in case of L1-norm model we used L1-norm in the regulariza-
tion term as proposed by the authors [3]. The bilateral total variation
regularization term is defined as follows:

‖CX‖pp =
	∑

l=−	

	∑
m=−	
α|l|+|m|‖X − S l

xS
m
y X‖pp. (8)

The parameters of the bilateral function are chosen as follows: α =
0.1 and 	 = 1. Since only LR versions of X are available, we used
1/τ as the summation of squared L2-norm of these LR images as
1/τ = 2

∑K
k=1 ||Yk ||22.

To test the effectiveness of the proposed model, experiments are
conducted by using four frames with different motion and different
blurring operator to estimate HR frame and blurring operators for
two different video sequences. We compared the proposed model
(Mixed) with previously proposed three models, namely

• globally weighted L2-norm (Global-2) [5],

• locally weighted L1-norm (Local-1) 1,

• locally weighted L2-norm (Local-2) [6].

The performance of each of these models is measured by both ob-
jective and subjective measures.

Figures 1(a) and 1(b) show the PSNR of the reconstructed HR
frames of Football sequence and Table Tennis sequence respectively.
From these figures, we can see that mixed-norm model is the most
stable among the other models. In addition, a comparison between
the proposed algorithm in case of known and estimated blurring op-
erators is shown in Fig. 1(c). From this figure we can see the effec-
tiveness of the proposed algorithm to estimate blurring operators.

Visual results for Table Tennis and Football sequences are shown
in Figs. 2 and 3 respectively. In Figs. 2(c) and 3(c) we can see that
even if weighted L2-norm is suitable for sequences containing lo-
cally moving objects, it is affected by the global motion of the whole
scene that exists. Also, in Figs. 2 (e) and 3 (e) we can see that
because of the existence of locally moving parts with fast motion,
weighted L1-norm fails around these parts because in these parts oc-
clusion may exist therefore median values of the weighted measured
frames is not a proper solution. In addition, it is clear in Figs. 2 (f)
and 3 (f) that L2-norm with global weights is not suitable for model-
ing SR noise especially in case of video sequences that include local
motion.
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