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ABSTRACT
Super-resolution reconstruction algorithms assume the availability
of exact registration and blur parameters. Inaccurate estimation of
these parameters adversely affects the quality of the reconstructed
image. However, traditional approaches for image registration are
either sensitive to image degradations such as variations in blur, il-
lumination and noise, or are limited in the class of image transfor-
mations that can be estimated. We propose an accurate registration
algorithm that uses the local phase information, which is robust to
the above degradations. We derive the theoretical error rate of the
estimates in presence of non-ideal band-pass behavior of the filter
and show that the error converges to zero over iterations. We also
show the invariance of local phase to a class of blur kernels. Ex-
perimental results on images taken under varying conditions clearly
demonstrates the robustness of our approach.

Index Terms— Registration, Super-Resolution, Local Phase.

1. INTRODUCTION

Generating high-resolution images from multiple low-resolution, de-
graded images has a variety of applications in space imaging, medi-
cal imaging, commercial videography, etc. Any Super-Resolution(SR)
algorithm assumes accurate blur and registration parameters. Most
of the existing registration algorithms perform well in presence of
uniform illumination across frames as well as limited and uniform
blur and noise. However, these conditions are frequently violated
in real-world imaging, where specular surfaces, close light sources,
small sensors and lenses create large variations in illumination, noise,
and blur within the scene. Interestingly, these are the exact situa-
tions, where one would like to employ super-resolution algorithms.

The primary factor that controls the quality of the super-resolved
image is the accuracy of registration of the low resolution frames.
Park et al. [1] has shown by example that small error in registra-
tion can considerably effect the super-resolution results. Most multi-
image super resolution algorithms assume that the exact registration
parameters between the constituent frames are known. However,
as mentioned before, the image artifacts can affect the accuracy of
estimation of these parameters. Typically, two characteristics of reg-
istration have been considered in the past:

(a) Accuracy: Super-resolution algorithms require extremely pre-
cise alignment of the low-resolution frames; accurate to the order
of a tenth of a pixel. However, most of these algorithms tend to
be sensitive to illumination, blur variations and noise. Examples
of such algorithms include RANSAC [2] and gradient descent based
approaches which minimize the squared error of pixel intensities [3].
Robinson et al. [4] also proposed a statistically optimal registration
technique based on intensity values. The registration parameters in
such approaches converge to incorrect values under image artifacts,
specifically, non-uniform illumination. Although the RANSAC-based
registration is robust in presence of outliers, its performance is re-
stricted by the reliability of feature detectors, which is considerably
affected by many image artifacts.

(b) Robustness: Registration algorithms that are robust to im-
age artifacts are available, and have been used in applications such
as registering multi-modal medical and space images. The primary

concern of these algorithms is to address large variations in the im-
age, while being moderately accurate. However, the accuracy of
such approaches is too low to be considered for SR applications.
Approaches that use frequency domain processing to compute the
registration parameters are relatively stable under various image ar-
tifacts. However, they are limited in the class of transformations that
can be estimated between two images [5]. Further reviews of the
registration algorithms can be seen in paper by Park et al. [1].

The image formation process used in Super Resolution (SR) re-
construction is given by a linear system,

yk = LkDkBkFkx+ nk, (1)
where 1 ≤ k ≤ n, x and yk are the high and low resolution im-
ages respectively. The geometric transformation parameters are cap-
tured by the matrix, Fk, which are estimated by the registration algo-
rithms, Bk is the blurring matrix, and the illumination variations are
taken care by the diagonal matrix Lk. However, current algorithms
deal with the illumination variation, only at the SR phase [6], and
assumes accurate registration. Solutions that deal with registration
error by treating it as noise [7] during the SR phase, and a combined
optimization of SR and registration [8] have been tried. However,
with larger amounts of registration error and outliers, the results will
degrade fast, or will not converge in more complex optimizations.

In this paper, we explore at an alternate solution to the problem
of robustness in the registration step of a SR algorithm. We for-
mulate the registration as optimization of the local phase alignment
at various spatial frequencies and directions. The local phase in an
image has been used for problems such as estimation of stereo dis-
parity [9], and optical flow field estimation [10]. We extend its scope
to estimate accurate registration parameters and use it for computing
super-resolved images. In this paper, we: 1) propose a registration
framework using local-phase, which is known to be robust to noise
and illumination parameters, 2) derive the theoretical error rate of
the approach introduced by limitations of Finite Impulse Response
(FIR) filters and show that the algorithm converges to the actual reg-
istration parameters, 3) show that the algorithm is not sensitive to a
large class of blur kernel functions; and 4) present experimental re-
sults of SR reconstruction, that demonstrates the advantages of this
approach as compared to other popular techniques.

2. LOCAL PHASE BASED REGISTRATION

Accurate registration can be achieved with the exact knowledge of
degradation parameters such as blur and non-uniform illumination.
However, in practice, this information is rarely available. We over-
come this problem by using local phase to estimate registration pa-
rameters. Local phase is robust towards noise and smoothly varying
illumination [11]. We prove the invariability of local phase informa-
tion to a class of blur kernels. Due to these characteristics, our regis-
tration algorithm can easily by-pass these image artifacts, which are
difficult to estimate accurately.

Local phase can be computed using any FIR band pass filter. The
phase, as opposed to magnitude of the filter response, is robust [11]
to Gaussian white noise. Existing registration algorithms routinely
achieve upto pixel-level accuracies. However, for finer registration,
features should be calculated with sub-pixel accuracy, even under
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Fig. 1. Block diagram showing different steps of the algorithm.

various image artifacts. Local phase based registration can achieve
this without explicit signal reconstruction, sub-pixel feature detec-
tion or correspondence computation. Local phase has been effec-
tively used to solve similar problems such as stereo disparity com-
putation [9] and optical flow [10] for noisy images.

Gabor filters are popular band pass filters as they achieve the the-
oretical minimum product of spatial width and bandwidth, desirable
for better localization and accurate phase computation, respectively.
Mathematically, a Gabor filter is a multiplication of a complex har-
monic function with a Gaussian envelope [12],
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ej(ωxx+ωyy), (2)

where, (ωx, ωy) is the angular frequency of the filter, σx and σy

controls the spatial width of the filter, and j is
√−1. Local phase

is computed at angular frequency (ωx, ωy) at each pixel location by
convolving the image with Gabor wavelet g(x, y). The argument of
the complex output is local phase. Phase difference is computed by
taking the difference of phase values at each location of the image
pair at the given angular frequency.

Confidencemeasurements: Errors could be introduced in phase
difference computation due to noise and the absence of the local fre-
quencies with which the images are convolved. Sanger [9] has de-
scribed the degree of match in the amplitude values as a confidence
measure. The value of confidence is high if the amplitudes of the Ga-
bor filter response at (x, y) in both the images are close. In addition,
if the amplitude falls below a particular threshold, the confidence
value is set to zero. Let |s1| and |s2| be the amplitudes of the Gabor
filter response. The confidence value is computed as:

r = min

» |s1|
|s2| ,

|s2|
|s1|

–
(3)

2.1. Registration Algorithm

Our local phase based registration algorithm is robust to noise, il-
lumination, blur and sub-sampling. We convolve the partially over-
lapping images with Gabor filters at multiple frequency pairs. The
idea of convolving with multiple frequencies is that in case the same
frequency is not present at both the corresponding location then that
observation could be pruned. The local translation parameters are
computed at each spatial location from the robust phase difference
estimation. An overdetermined system of equation is formed and
from these estimates the registration parameters are computed. The
transformation parameters are updated iteratively so that errors due
to uncertainty in the frequency estimation of the band-pass filter is
minimized. Moreover, in any small 2D filter window the correspond-
ing point locations should lie within the cycle of the sinusoid. This
condition should hold true at most of the image locations, for our
algorithm to converge.

2D Local Translation: In the 1D case, the shift between two
sinusoids of the same frequency is estimated by measuring the phase
difference at the same spatial location and then dividing it by the
frequency of the signal. The computation of translation components
can be formulated on the basis of Fourier Shift theorem, according
to which, a shift of Δx in the spatial domain would produce a phase
difference of Δxωx at ωx. This is extended in 2D as, a shift of
(Δx,Δy) in the spatial domain would produce a phase difference
of (Δxωx + Δyωy). By computing the phase difference at least
at two different angular frequency pair we can estimate (Δx, Δy).

We choose various combinations of (ωx, 0), (0, ωy) to compute Δx
and Δy respectively. Other combinations of angular frequencies are
avoided because solving equations in two variable is very sensitive
if both the angular frequencies are very close and the error can go
up with increasing noise. The inclusion of confidence parameters
in the final computation of variables is straightforward if we restrict
the angular frequencies to these two classes. Gabor filter will act
as a low-pass filter in orthogonal directions and the effect of noise
is reduced. The phase difference is computed at multiple frequency
pairs in each dimension and is combined by taking the average of
estimates weighted by the confidence values. A pixel is removed
from consideration for computing the registration parameters if there
is not sufficient response of Gabor filters at all frequencies. This
approach is correspondenceless. The local translation parameters
thus estimated are accurate at sub-pixel level and computation from
multiple frequencies make the estimation robust.

Frequency Selection at each Iteration: From the phase of the
convolution product, as given by equation 5, the observation is that
for a constant spatial window width, local phase is more accurate
at higher frequency. But at higher frequency the domain of conver-
gence decreases. The frequency of the band-pass filter is changed
from low to high as the algorithm converges. At each iteration, vari-
ous angular frequencies of the Gabor filter are selected such that they
are close. In any iteration, no merging of low and high frequencies
is done to compute local translation parameters.

Registration Parameters: Local translation parameters thus
computed at various spatial image locations can be thought as point
correspondences with high accuracy. Given many such correspond-
ing pairs, the image transformation parameters can be estimated by
solving an overdetermined system of equation. This framework al-
lows to calculate any type of registration. For our experiments, we
limit the class of registration algorithms to that of planar views re-
lated by affine transformation. This is because most of the partial
overlap, e.g. images captured from a video sequence can be approx-
imated by affine transformations. At each location, we estimate the
translation parameters, which is related to the correspondence of a
point (x, y) in one image with (x′, y′) in the other. We form an
overdetermined system of equations in image transformation param-
eters and estimate the accurate registration parameters.

The local translation parameters, calculated at each spatial loca-
tion, are approximately correct. This is because in a small window
points need not be related by pure translation. Moreover, the two
points need not lie within the cycle of the signal. However, over
iterations, as the corresponding points come closer, the effect due
to these assumptions would be negligible. We iteratively update the
transformation parameters till convergence.

3. CONVERGENCE, ERROR, ROBUSTNESS ANALYSIS

Noise, blur, illumination effects the accuracy of any registration al-
gorithm. We analyze the performance of local phase under these
artifacts. Analysis is performed for 1D signals but extensions to 2D
is simple and the analysis is same. We consider a 1D Gabor filter,
g(x), with angular frequency ω0 and a sinusoidal signal given by,

i(x) = cos((ω0 + Δω)(x + t)), (4)
where Δω captures the non-ideal band pass behavior of the filter
and at cut-off frequency it is the half band-width of the filter, t is
the initial shift. The convergence and error bound is computed by
analyzing the sinusoids at the cut-off frequencies of the Gabor filter.

Non-Ideal Band Pass Behaviour of the Gabor Filter: Gabor
Filter has the minimal constant product of spatial width and band-
width so there is a trade-off in selecting their sizes. Smaller spatial
width does help in localization but at the cost of non-zero bandwidth.
We convolve the Gabor filter, g(x), with the sinusoid (eq. 4). The
phase of the convolution product is (see appendix A.1),

φt(x)=tan−1

"
tan((ω0+Δω)(t+x))

 
1−e−2(ω2

0+ω0Δω)σ2

1+e−2(ω2
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!#
,

(5)
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Fig. 2. Error in calculation of shift due to non-ideal bandpass filter
for various shift values. Solid lines show the theoretical, dotted lines
shows the simulated behavior.
At infinite width or at very high frequency the local phase computed
is accurate. To show the convergence of phase based registration al-
gorithm we only show that the local translation parameters are com-
puted accurately over iterations at cut-off frequencies of the Gabor
filter (cut-off frequency is calculated using Heisenberg’s uncertainty
principle [12]). The error is calculated for each value of shift as the
absolute difference between the actual shift and the shift computed
using (d = (φ2 − φ1)/ω) (φ2 and φ1 are the local phase computed
using equation 5 and we assume that only one sinusoid is present).
This theoretical error rate is plotted against the simulated convolu-
tions where the sinusoid is quantized and sampled on a grid after its
magnitude is scaled by 128. From the error graphs (Figure 2), we
conclude that the error drops to zero over iterations. Note that even
for ideal band-pass filter the error is not zero at low frequency.

Blur: Given a sinusoid, i(x) (eq 4), and an even and real blur
kernel, b(x), the local phase is independent of all parameter of blur
kernel but the magnitude is scaled (see Appendix A.2). Two im-
ages can be compared by local phase information in presence of
blur. However, higher frequency information is degraded because
of sampling on a grid. The blur parameters varies due to variation in
depth and for a planar scene the variation is smooth. It can safely be
assumed that in a small window the blur parameters are constant.

Illumination, Noise and Quantization Errors: Illumination
change, in image space, is the multiplication of pixel value by an-
other value. Smooth illumination can be modeled by the multipli-
cation of a constant in a window. The phase information computed
at these two locations will remain unchanged as compared to the
magnitude of the signal, which will be scaled by the illumination
constant. Fleet and Jepson [11] has shown that the phase is more
robust for image matching than the amplitude of the filter response
in presence of noise. Quantization errors can also be modeled as
noise. The quantization error results from the mapping of irradiance
field onto digital sensors. For band-limited noise, the error in the
estimation is reduced by considering the phase output of those filters
that do not allow those frequencies to pass through. This is done by
assigning low scores to those phase difference estimates where there
is a significant amplitude mismatch in both the signals detected.

4. EXPERIMENTS AND RESULTS

Experiments have been performed on synthetic low-resolution frames
and on more challenging real-life images captured using a mobile
phone camera (Nokia 3320). The results of our algorithm has been
compared with registration algorithm which is based on minimiza-
tion of mean squared intensity differences [3](IM) using gradient de-
scent and RANSAC [2]. Intensity minimization algorithm has been
chosen because it is very accurate in presence of noise and widely
used. RANSAC is robust in presence of outliers. We use the algo-
rithm mentioned in [13] for super-resolution reconstruction without
any regularization term. For synthetic data-sets the registration al-
gorithms have been compared by using absolute Mean Shift Error
(εms). It is absolute mean of the amount of displacement required to
place a point in one image (after applying the calculated transforma-
tion) onto the reference image for each pixel. Super-Resolved image

has been compared with the ground truth using Root Mean Square
Reconstruction Error (εre) on intensity values.

We generated three different kind of data sets of low resolu-
tion(LR) frames, which are related by affine transform, from a single
high resolution(HR) frame. In first data-set Gaussian noise of vari-
ous levels were added all under same Gaussian blur of window size
4 and variance 2. In second data set, smooth spatially varying blur
with window size smoothly varying between 5 and 9 in different di-
rections was added in each LR frame. In third data-set noise having
variance 3 and uniform Gaussian blur was added. Non-uniform illu-
mination was synthetically generated which degrades radially from
a randomly selected point source for each of the LR frames. Ta-
ble 1 summarizes the result for noisy data-set. For second data-set
we got the absolute mean shift error as 0.379, 0.674, 0.285 for IM,
RANSAC and our algorithm respectively. For third data set, where
each low resolution frame has different kind of illumination varia-
tions we got the registration error as 5.849, 1.391 and 0.210 respec-
tively. Images were magnified by a factor of 1.8 in all the cases.
More challenging real-world video was taken using a mobile phone
camera (Nokia 3320). (Video were taken such that all the LR frames
are related by affine transformation only by keeping the camera only
in one plane). Different part of the scene was illuminated during the
video capture by using a flashlight. 8 frames(each had 128 × 96)
were selected out of the video for scene super-resolution. Compres-
sion artifacts are clearly visible in all LR frames. Fig. 3 summarizes
the result. The magnification factor was 2.2. Our algorithm has
significantly performed better than the other image registration al-
gorithms. The main reason is lack of features in such a small and
heavily degraded image and strong illumination artifacts.

Bicubic Ideal RANSAC IM Proposed
σ εre εre εms εre εms εre εms εre

1 18.28 6.87 0.56 14.71 0.189 9.23 0.195 9.39
2 18.34 7.28 0.77 15.57 0.189 9.83 0.201 10.07
3 18.43 8.08 0.79 16.10 0.187 10.21 0.216 10.44
4 18.55 8.39 0.83 17.11 0.187 10.72 0.221 11.11
5 18.72 8.97 0.65 17.84 0.186 11.17 0.223 11.67
6 18.91 9.45 0.92 19.01 0.191 11.87 0.223 12.27

Table 1. Comparison of the proposed scheme with other image reg-
istration algorithms under Gaussian white noise (with 0 mean and
standard devation, σ, from 1-6). (Ideal) denotes the error when ac-
tual registration parameters are given as input for SR reconstruction.

Discussions: Our algorithm performs better than RANSAC for
all 3 data sets and is comparable to intensity minimization algorithm
(IM) under Gaussian white noise. The optimization framework for
IM can be shown to be independent of Gaussian white noise, and
hence its performance is marginally better than the proposed one.
However, our algorithm clearly outperforms IM in presence of non-
uniform illumination and non-uniform blur. SR applied on the im-
ages taken from the video of the mobile phone camera shows the ro-
bustness and practical applicability of our algorithm. The compared
algorithm fails miserably in such cases due to the lack of feature
points, compression artifacts, small size of the image, and high level
of degradations. Moreover, our algorithm is correspondence-less and
does not require the calculation of feature points. Experiments were
performed for images related by an affine transformation. However,
our algorithm is easily extensible to a general class of image trans-
formations. The computation of local phase requires a minimum
amount of texture in the image. As we need not compute exact fea-
ture locations, the absolute intensity values need not be preserved
across the image, and hence can deal with varying blur and illumi-
nation. Existing transformed domain techniques are more robust to
these artifacts. But they solve a very small class of image transfor-
mations. Our algorithm can estimate the local translation accurately,
given that the corresponding points lie within the cycle of the signal
(8-10 pixels apart in practice). By quick registration using any exist-
ing image registration algorithm we can overcome this limitation.
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Fig. 3. (a) various LR frames (4 out of 8 used) of a video with
spatially varying illumination captured using a mobile phone cam-
era; SR reconstruction results using different registration algorithms
(b) intensity minimization (c) RANSAC (sift point detector) (d)
RANSAC (Harris point detector) (e) single frame bicubic (f) phase-
based method; compression artifacts is absent in (f) and the center
text is more clear

5. CONCLUSIONS

We proposed an algorithm for image registration, which is robust
in presence of noise, non-uniform blur and illumination. We have
shown that our algorithm based on local phase is independent of
blur and illumination artifacts. Our approach is also correspondence-
less, and hence there is no need of calculating features, explicitly.
We have proven the convergence of the algorithm, even when it is
impossible to identify the exact frequency of the underlying signal.
Our algorithm is extensible to any general class of image registra-
tion which is not the case with other transformed domain approaches
though both provides similar robustness.
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A1: Derivation of Equation 5

We rewrite i(x) in Euler form as,
i(x) = (ej(ω0+Δω)xej(ω0+Δω)t + e−j(ω0+Δω)xe−j(ω0+Δω)t)/2

The convolution product with the Gabor filter is
r(x) = i(x) ∗ g(x)

=
1

2

Z +∞

−∞

(ej(ω0+Δω)x′ej(ω0+Δω)t + e−j(ω0+Δω)x′e−j(ω0+Δω)t)

.e
−

(x−x
′)2

2σ2 ejω0(x−x′)dx′

After simplifying the above equation we have,
r(x) = σ

p
π/2

“
ej(ω0+Δω)(x+t)e−

1
2
(Δωσ)2

”
+ σ

p
π/2

“
e−j(ω0+Δω)(x+t)e−

1
2
(2ω0+Δω)2σ2

”
Let θ=(ω0+Δω)(x+t), A=e−

1
2
(Δωσ)2 and B=e−

1
2
(2ω0+Δω)2σ2

r(x) = σ
p

π/2
“
Aejθ + Be−jθ

”
= σ

p
π/2 ((A + B) cos θ + j(A − B) sin θ)

Phase of r(x), after substitution and simplification is equation 5.

A2: Blur Invariance

First we derive the convolution of b(x), a blur kernel which is real
and even, and i(x), a sinusoid (equation 4). For simplicity let ωp =
ω0 + Δω. Let B(ω) is the Fourier transformation of b(x) and I(ω)
is the Fourier transformation of i(x) which is [14]:

I(ω) = ejωt(πδ(w − ωp) + πδ(w + ωp))
Using the fact that if b(x) is real and even, then B(ω) will be real
and even [14] and the convolution in spatial domain is equivalent to
multiplication in frequency domain. So,

R(ω) = B(ω)I(ω)

= ejωt(πB(ωp)δ(w − ωp) + B(−ωp)πδ(w + ωp+))

= B(ωp)e
jωt(πδ(w − ωp) + πδ(w + ωp))

Note that ωp is a constant. Taking the inverse Fourier transformation,
r(x) = B(ω0 + Δω) cos((ω0 + Δω)(x + t))

Convolution of r(x) with the Gabor filter is simple by following
the steps in App. A.1 from here, we note that the phase information
remains invariant, while the amplitude is multiplied by B(ω0+Δω).
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