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ABSTRACT
A variant of the k-nearest neighbor algorithm is proposed for im-
age interpolation. Instead of using a static volume or static k, the
proposed algorithm determines a dynamic k that is small for inputs
whose neighbors are very similar and large for inputs whose neigh-
bors are dissimilar. Then, based on the neighbors that the adaptable
k provides and their corresponding similarity measures, a weighted
MMSE solution de nes lters speci c to intrinsic content of a low-
resolution input image patch without yielding to the limitations of
a non-uniformly distributed training set. Finally, global optimiza-
tion through a single pass Markovian-like network further imposes
on lter weights. The approach is justi ed by a suf cient quantity of
relevant training pairs per test input and compared to current state of
the art nearest neighbor interpolation techniques.

Index Terms— interpolation, nearest neighbor

1. INTRODUCTION

Image interpolation relates to the problem of creating new detail
from a discrete set of known points. The quality of the interpola-
tion is usually considered subjectively, where content such as edges
and textures are evaluated based on sharpness, continuity, and clarity.
These properties can be generated by introducing new information to
the problem in the form of a training set. Using a patch-based sliding
window, the proposed algorithm interpolates images locally with a
linear lter designed by the k nearest neighbors from a training set.

Standard interpolation techniques (not particularly speci c to
image applications) include static linear ltering such as bilinear
interpolation and B-splines. It is widely acknowledged that the ap-
proaches incorrectly assume that relationships between local low and
high-resolution content can be described with a single convolutional
kernel. Rather, their complexity usually justi es their usage, and
though numerical results are most likely incorrect, the visual quality
does not overtly re ect this. In other words, the result relies on the
assumption that the human visual system (HVS) is forgiving of esti-
mation errors from reasonably designed linear lters. The assump-
tion is fundamental to our effort because the damage of estimation
errors due to insuf cient training will appear perceptually mitigated.

A logical improvement on static interpolation methods would be
to use unique lters adapted to their respective situations, achieved
using the k nearest neighbors (k-NN) of a training set. The proposed
method specially tailors lters to t the test input based on the near-
est low and high-resolution training pairs. The goal is to achieve
speci city with regard to image content without any loss of general-
ization of application. That is, how detailed can we make an image
look, and how broad a variety of images can we maintain?

This is actually a tradeoff intimately related to the quantity of
training samples used per reconstruction lter. For images, more
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training points per lter, i.e. k large, equals more generality, mean-
ing that errors and variations due to the training set are diminished.
Alternatively, fewer training points per lter, i.e. k small, equals
more speci city, meaning that the image reconstruction is clearer
and more detailed. Because training points are distributed unevenly,
the relevancy of the closest training points to the test input may be
variable depending on the content (edges, surfaces, texture, etc.)
within a single image. Should the neighbors be “close” to the test
input, then fewer points are necessary because the subsequent lter
design represents the test input well. Should the neighbors be “far”,
we obtain a large number of training points in the hopes that linear
ltering masks the weaknesses of the training set.
This work proposes an adaptable k for the k-NN algorithm with

special application to image interpolation, and explores the poten-
tial of the algorithm while comparing to related approaches. Sec. 2
describes the local interpolation techniques employed, i.e. the de-
termination of k and minimum mean squared error (MMSE) lter
coef cients. Then, Sec. 3 discusses a random eld approximation to
implement global considerations. Finally, Sec. 4 and Sec. 5 compare
the algorithm to state of the art interpolation methods and state the
conclusions to the introduced topics.

2. LOCAL IMAGE INTERPOLATION
WITHK NEAREST NEIGHBORS

Using k-NN for superresolution is not in itself novel. Freeman’s
example-based approach draws from candidate nearest neighbors
and chooses the “best” neighbor by heavily approximating a Markov
network. Chang et. al’s local linear embedding (LLE) [1] learns a k-
NN de ned regression after assuming certain relationships between
low and high-resolution.

Neither of the approaches utilize advantages of the popular im-
age processing technique of linear ltering, a unique asset to the
proposed algorithm. Other shortcomings include issues in train-
ing set scaling; Freeman [2], through our experimentation, scales
marginally according to training set size, and at times image qual-
ity even slightly deteriorates. Additionally, recent developments in
[3] show that the underlying assumption of isometry in [1] (at least
for Euclidean distances) between low-resolution neighbors and high-
resolution neighbors is inherently false. In other words, the distance
metric used by [1] at low-resolution does not correspond to its as-
signed high-resolution counterpart, and thus, the weights used at
high-resolution are inappropriate.

While both approaches are based in lazy learning, other than
its application to image interpolation, they do not improve upon the
learning processes themselves by adjusting to the speci c problem
at hand. In hopes of observing the best traits of [1] and [2] while
simulatenously rectifying their weaknesses, the proposed algorithm
adapts both linear ltering and k-NN learning to the superresolution
problem at hand in Sec. 2.1 and Sec. 2.2, respectively.
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2.1. Weighted Linear MMSE Interpolation

The k-nearest neighbor rule is among the simplest statistical learning
tools in density estimation, classi cation, and regression. Trivial to
train and easy to code, the nonparametric algorithm is surprisingly
competitive and fairly robust to errors given good cross-validation
procedures.

LetΩ be a training set ofN low and high-resolution pairs. Then,

Ω = {(x1, y), (x2, y2), · · · , (xN , yN )} (1)

where xi are d dimensional input vectors and yi are u dimensional
output vectors.

The traditional view of nearest neighbor algorithms [4] for den-
sity estimation is mathematically expressed as

f̂(xo) =
1

Nσ

N�
i=1

K
�xo − xi

σ

�
(2)

whereK represents a kernel that integrates to one. The kernel func-
tion K of the proposed algorithm used in (2) is the RBF, stated as
follows

KF(xi, xj) =
1

2π‖Σ‖ exp {dF(xi, xj)} ≤ 1 (3)

where (xi, yi), and (xj , yi) ∈ Ω, and dF(xi, xj) is the Mahalanobis
distance or weighted Euclidean distance in feature space speci ed
by 1

2
(xi − xj)

T Σ−1 (xi − xj). Conceptually, (2) estimates f(x)
by placing kernels around every training point in order to describe a
complete picture of the probability density function.

One family of generally applicable models for k-NN regression,
known as locally weighted regression [5], de nes a group of para-
meterized functions g(x, β), in which the output yo is determined
locally by functions based on how similar point xi is to xo. The task
then falls to estimating select parameters for reconstruction in (4).

β∗ = argminβ

�
xi∈neighborhood

dR (g(xi, β), yi) K (dF(xi, xt)) (4)

where dR and dF are distance metrics in the range and feature space,
respectively.

On the principle that isometry is not a realistic scenario for im-
age superresolution [3], (4) becomes a viable alternative, where the
assumption is that linear ltering yields an excellent approximation
for local image construction as opposed to assuming some kind of
duality between low-resolution and high-resolution manifolds in [1].
Hence, the g(x, β) in (4) can be reduced to an MMSE lter formu-
lation, and we can nd yo by

yo = E [yo|xo] ≈ g(xo, β) = Gxo (5)

where G is a u × d matrix constructed by probability parameters β
and neighboring low-resolution and high-resolution pairs.

The focus from (5) now becomes nding G, which is accom-
plished by slightly modifying traditional MMSE equations. To man-
age the data, let us assemble all neighboring low-resolution column
vectors xi and high-resolution column vectors yi into X and Y ma-
trices, respectively. From (3), we construct a matrix P for a given
neighborhood of xo such that if p is a vector of similarity measures
whose ith entry is the valueKF(xi, xo), then

P = 1Tp (6)

where 1 is a k dimensional column vector of all ones. Hence, P has
dimensions k × p.

The purpose of P is to establish a proper weighting of point
xi ∈ N (xt). Since one of the arguments to the KF(xi, xj) in (3)
is always xo, weighting schemes usually observe the similarity be-
tween xi given xo as a Gaussian PDF with mean centered at xt and
the elements in P as how probable that neighborhood vector is rele-
vant.

The sample autocorrelation matrix RXX = XXT and cross-
correlation matrix RXY = XY T lead to the nal expression for G
in (7), which is roughly equivalent to the derivations from [6].

G = (RXX · P )−1 (RXY · P ) (7)

2.2. Choosing the Correct k

The required weighting scheme in Sec. 2.1 is a consequence that
remedies the built-in error of uneven training data collection in un-
supervised learning. Similarly, non-uniformly distributed training
data also has implications that k∗ may potentially be signi cantly
different for any two given test points, where again, the goal is to
nd the right k for a desired tradeoff.
As one may guess, k < k∗, where k∗ is the optimum value of k,

over ts the training set by specializing byG too much, and the mani-
festation is a grainy and discontinuous image. Furthermore, if k were
exceedingly small, k � k∗, G could become non-singular. This is
intuitive because training points near xo could be very close together
causing (7) to be underdetermined. Analytically speaking, vectors in
X that are too similar can mean that RXX is rank de cient and thus
non-invertible. This is a dilemma because while k-NN should nd
the most relevant data, it is designed such that the collected vectors
based on xo are similar to each other. Hence, though it is counterin-
tuitive, it is important to choose a large enough neighborhood in F
so that diversity in theN (x) exists.

To nd the optimal k∗, we introduce η such that k∗, a function
of xo and the training set Ω, is determined by

k∗(x, Ω) = argmink

N�
i=1

Wi(xo, Ω, k)K(xi, x) ≥ η

where Wi(xo, Ω, k) ∈ {0, 1} (8)

The expression in (8) obtains k∗ by nding the minimum number of
neighbors whose sum of similarity measures exceeds a threshold η.
Moreover, η is a minimum bound of k since K(xi, xo) ≤ 1 for all
xi.

To analyze (8) for a given xo, if there are only a few xi with high
probability of being related to it, that is

�
i K(xi, xo) is small, then

the proposed algorithm will need to consider more points in hopes of
generalizing well. Alternatively, if there are many xi that are related
to xo, i.e.

�
i K(xi, xo) is large, it is unnecessary to use other points

where the similarity is low because the specialized lter generated
by the points within

�
i K(xi, xo) ≤ η is very likely to be accurate.

Conceptually, we can visualize a ring that extends further and further
depending on whether or not there are enough points inside the ring
and whether those points have high enough similarity values.

2.3. Heuristics for Insuf cient Training

k-NN algorithms assume there are enough points to blanket the en-
tire domain, providing a good density estimate of the input space.
Problems then arise from insuf cient training because the further
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the ring of values under consideration extends, the smaller the sim-
ilarity values, and the less suited any additional training point is to
complete the task of reaching η. In extreme cases, η may not even be
reached before the entire training set is exhausted of points. Thus,
we require the incorporation of a simple heuristic of limiting the
maximum value of k that is allowed to be used. When the maxi-
mum value of k is reached, then k-NN is no longer adequate for xo

because there are too few points in Ω that are relevant.
Let ζ denote the maximum value of k. The question now be-

comes nding what kind of interpolation algorithm should replace
k-NN when ζ is reached. Is there a particular type of image patch
that the k-NN algorithm consistently disfavors? Moreover, based on
this bias, are there certain properties of these patches that allow an
informed decision to determine high-resolution content? The answer
is yes on both accounts. After running several tests, we came across
a peculiar reoccurring theme in generic training and testing images:
texture patches never reached ζ and appeared at high quality, but
edge patches often did and required an alternative interpolation tech-
nique, seen in Fig 1.

(a) Original Interpolation (b) Patches w/Insuf cent Training

Fig. 1. With only 200 thousand data points, we cannot ac-
tively reconstruct many edges on the lighthouse because training
patches don’t occur frequently enough and there aren’t close enough
matches. Texture, however, can be, and much of the texture interpo-
lation occurs because k∗ < ζ.

Fig. 1 reveals much about the patch-based domain, where it is
reasonable to assert that the distribution of low-resolution patches
in Euclidean space clusters around texture. The phenomenon makes
sense because image content is usually dense in texture with sparse,
albeit structure-de ning, edges.

Though texture results in high peak signal to noise ratios (PSNR),
to be presented in Sec. 4, the human visual system (HVS) focuses
on edges. Fortunately, research into edge-oriented image ltering
has been well-studied. In our framework, we agglomerate a bank
of edge-oriented lters that do “well-enough” when the “best” lter
through k-NN is unavailable, effectively reducing the implementa-
tion to a specialized version of [6] with an added MRF improvement
(the next section, Sec. 3) through [7].

3. GLOBAL APPROXIMATION USING RANDOM FIELDS

Freeman [2] makes a good argument that globalization in terms of
relating neighboring patches is necessary. Consequently, we have
followed their lead by considering the usage of Markov network
in modeling spatial relationships between patches. These model-
ing techniques usually require the use of some annealing process,

which is usually computationally intractable for most realistic ap-
plications. Therefore, with the aid of [7], we have implemented
a simpler-than-MRF, single-pass technique to enhance coherency
from patch to patch.

Single pass algorithms include extra arguments into the decision
making process that increase propensity towards one neighbor over
another. Because our algorithm observes multiple neighbors per in-
put patch, the structure of the one pass algorithm must be modi ed
somewhat. Given the lter construction process in (7), we can take
advantage of an expression that is already designed to penalize or re-
ward training points through a matrix P . To review conceptually, el-
ements within P denote the importance of a particular training point.
After determining the k∗ values for all image patches (or realisti-
cally, just the ones surrounding the test patch being evaluated), the
logical course of action would be to reward those states that contain
high values forK(xo, xi) and Ψ(zo, zn), where Ψ de nes the simi-
larity of states zo and zn. Adding a cross-validated scaling factor α,
a very simple conditioning scheme could be

P(i,·) = K(xo, xi) + α
�
n∈N

�
j

Ψ
�
z(n)
j , zi

�
(9)

Here, z(n)
j refers to the jth candidate state of the nth low-resolution

block in the neighborhood N , the neighborhood of the input block.

4. RESULTS

The proposed algorithm is designed with the assumption that a very
large training set is available. (Training set size N on the order of
107.) Even training and testing on the same image will not yield any
meaningful result should the testing image remain the only training
available. In our experiments, a minimum of 10 images, where there
are at least a few million image patches, is common. Requiring large
N returns to previous explanations of determining lter coef cients
from the proposed algorithm’s choice of k. As it turns out, creating
a nonsingular matrix is surprisingly dif cult, and very often insuf -
cient data plagues the lter generation effort.

With an RBF kernel, we can alter two degrees of freedom in our
experiments, σ, the bandwidth parameter of the Gaussian used to ex-
tend around the observation, or η, the minimum number of training
points necessary. Between the two, it is easier to alter η because the
bandwidth σ is a squared exponent term and is dif cult to control.

From descriptions in Sec. 2, values of k are directly correlated
with the amount of training, N . Increasing N usually results in de-
creasing k, and this is veri ed through experimentation because k
tends to stay around select values, kavg , for particularN . In Fig. 2, k
has a standard deviation of 59.79 on average staying around 151.76.
Often ζ = 106 is reached, but it is usually either hit or miss, where
either k is be close to kavg or ζ isreached, in which case, image
values are created using classi ed edge lters.

Fig. 2 shows the qualitative results of other nearest neighbor and
statistical classi cation algorithms alongside our own, and Table 1
gives the quantitative results for various images. The total number
of training for this set of test runs is N = 4, 309, 914 points.

Fig. 2(a) and Fig. 2(b) show a decidedly edge-centric result,
which can be explained by the neighborhood regularization done
through Markov networks and limited class usage, respectively. The
algorithms perform especially well in areas where the original image
contains a disparity between textures such as the border between the
bus and the background, but gives average performance where edges
are less well-de ned (see the pole above the bus in Fig. 2(a) and bus
window pane in Fig. 2(b)). The same phenomenon can be seen for
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(a) Example-based [2] (b) Classi cation-based [6]

(c) Neighbor-Embedding [1] (d) Adaptive k-NN

Fig. 2. Comparisons of the bus image for various statistical learning
interpolation techniques. Neighbor embedding [1] in (c) seems to
work for select images only.

Table 1. Miscellaneous PSNR comparisons
METHOD PSNR Values

Pirates Lighthouse Bus,4
Bicubic 29.28 dB 28.87 dB 24.55 dB
NEDI [8] 26.82 dB 27.44 dB 22.57 dB
SEL [9] 26.67 dB 27.38 dB 22.63 dB

128 Class RS [6] 28.91 dB 28.98 dB 26.48 dB
LLE [1] 21.97 dB 22.70 dB 18.04 dB

Example-Based [2] 27.28 dB 28.75 dB 25.52 dB
Proposed Algorithm 29.62 dB 29.12 dB 26.25 dB

involved textures (the bushes in the lower right hand corner). This re-
sult is interesting, and could be a byproduct of the particularly large
emphasis Freeman places on texture regularity. More likely, Sec. 2.3
reasons that the trend could be due to an incorrect choice of a sin-
gle neighbor from insuf cient edge information. Fig. 2(d) follows
this model, but here, the bene ts of k rather than a single neighbor
becomes apparent, signi cantly reducing the artifacts that af ict [2].

Again, our algorithm does not have the luxury of an initial inter-
polation stage, instead ltering from scratch, and when there is in-
suf cient training, cross-validation for η and σ is dif cult albeit pos-
sible. Owing to this fact, the proposed algorithm manages smaller
N sizes at the lower end of α < 10 in α × 105 worse than [2]. Yet,
when N is large, it often outperforms [2].

Interestingly enough, while [1] is the most similar in theory to
our algorithm, the results (veri ed by code from the original au-
thor) did not re ect this. No interpolation effort with any reasonably
cross-validated parameters yielded acceptable results. Experiments
in [1] trained on single images, but the feature space of [1] in those
cases was an astonishing 100 dimensions, which mandates an im-
mense N . The errors may be due in part to the fact that neighboring

patch information is not considered. Also, because the neighbor-
hood preservation rate of the output patch is on average less than
10% [3], we can expect little continuity in the image result, justify-
ing the methods in Sec. 3 to consider adjacent image patches.

5. CONCLUSIONS AND FUTUREWORK

A k-NN algorithm with optimal lters and a variable k, determined
by relevant training, has been proposed, tested, and compared to the
state of the art. The analysis of the proposed algorithm leads to the
following conclusions:

• For small training sets, edges cannot be accurately depicted
with any nearest neighbor algorithm (using Euclidean dis-
tance).

• Fast neighboring-patch approximations of a Markov Network
elucidate edges and provide good continuity but sometimes
hinder texture synthesis in cases where the training is limited.

• Linear ltering is a good mask and covers up considerable
estimation errors.

• The direct application of k-NN regression with slight modi -
cations exhibits competitive image quality and offers detailed
texture.

The investigation of k-NN for image interpolation opens several
avenues of analysis. While empirically touched upon in Sec. 2.2,
theoretical analysis of domain representations remains a pressing
topic. Along with domain considerations comes the more immediate
need for a good distance metric, which may be manifested in such
techniques as dimensionality reduction and feature-space mapping.
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