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ABSTRACT

This paper presents a kernel PCA-based adaptive resolution enhance-
ment method of still images. The proposed method introduces two
novel approaches into the kernel PCA-based reconstruction of high-
frequency components missed from a high-resolution (HR) image.
First, since local images between two different resolution levels of a
pyramid structure are similar to each other, nonlinear eigenspaces of
local images in the target low-resolution (LR) image are utilized as
those of local images in the HR image. Further, in the kernel PCA-
based reconstruction process of the high-frequency components, our
method monitors errors caused in the known low-frequency com-
ponents and realizes the selection of the optimal eigenspace. Then,
since the missing high-frequency components can be adaptively es-
timated, the accurate HR image can be obtained.

Index Terms— Resolution enhancement, Image enlargement,
Super-resolution, Kernel PCA.

1. INTRODUCTION

In the field of image processing, resolution enhancement of digi-
tal images is a very important issue, because it can be applied to
fundamental applications. For example, many applications such as
enlargement of consumer photographs and conversion of traditional
standard-definition television video content to high-definition televi-
sion could benefit from resolution enhancement techniques.

Many methods for achieving accurate resolution enhancement
have been proposed in order to realize the above applications. Tra-
ditionally, nearest neighbor, bilinear, bicubic, and sinc interpolation
methods [1, 2] have been utilized for image enlargement. However,
since they cannot estimate missing high-frequency components of
the original high-resolution (HR) image, their results suffer from
some blurring. Thus, in order to estimate the missing high-frequency
components, single-frame super-resolution methods have been pro-
posed [3]. However, since these methods need to utilize other HR
images as training data for reconstructing the high-frequency com-
ponents, their performance depends on these training data.

In this paper, a novel resolution enhancement method based on
a kernel PCA [4] is proposed. The proposed method introduces
two novel approaches into the reconstruction of the missing high-
frequency components. First, nonlinear eigenspaces calculated from
local images in the target low-resolution (LR) image are utilized as
those of the HR image. Specifically, our method classifies local im-
ages clipped from the target LR image into some clusters, and re-
gards the nonlinear eigenspace of each cluster as that of the HR im-
age. Since local images between two different resolution levels of a
pyramid structure are similar to each other, the accurate estimation
of the nonlinear eigenspaces of the HR image can be expected. Then,

by using each nonlinear eigenspace, the inverse mapping, which re-
constructs the missing high-frequency components from the known
low-frequency components, can be approximately calculated. Sec-
ondly, in the reconstruction process using the obtained inverse map-
ping, the proposed method adaptively selects a cluster minimizing
errors of the known low-frequency components. This approach pro-
vides a solution for searching the optimal cluster even if the HR
image is unknown. Consequently, utilizing the optimal cluster’s in-
verse mapping, the proposed method can correctly reconstruct the
high-frequency components. Therefore, in our method, the accurate
estimation of the HR image can be expected.

This paper is organized as follows. The estimation of the non-
linear eigenspaces of the HR image is explained in Section 2. In
Section 3, the new image resolution enhancement method using the
obtained nonlinear eigenspaces is presented. Experimental results
that verify the performance of the proposed method are shown in
Section 4. Finally, conclusion remarks are shown in Section 5.

2. ESTIMATION OF NONLINEAR EIGENSPACES

In this section, we estimate eigenspaces of a HR image using only
a target LR image. As shown in Fig. 1, the target LR image f ,
which we observe, is obtained by blurring and subsampling the HR
image F. We can easily calculate the blurred HR image F̂ in Fig.
1 by upsampling the target LR image f . However, it is difficult to
reconstruct F from F̂ since the high-frequency components of F are
missed by the low-pass filter. Therefore, the proposed method tries
to estimate the missing high-frequency components based on a non-
linear eigenspace method, which utilizes nonlinear eigenspaces of
the HR image. Note that these eignespaces cannot be directly cal-
culated since the original HR image is unknown. Thus, we utilize
eigenspaces calculated from local images in the target LR image for
those of the HR image. It is well known that local images between
two different resolution levels of a pyramid structure are similar to
each other. Therefore, utilizing the eigenspaces calculated from the
local images in the target LR image, the accurate estimation scheme
of the eigenspaces of the HR image can be expected. The details of
this estimation are described below.

First, we clip N local images gi (i = 1, 2, · · · ,N) whose size is
w × h pixels from the target LR image f . Next, two images gLi and
gHi , which respectively include low-frequency and high-frequency
components of each clipped local image gi, are calculated. Then, we
obtain vectors li and hi whose elements are respectively the raster
scanned intensities of gLi and gHi . Furthermore, the proposed method
maps li into the feature space via the nonlinear map Φ:Rwh → F [4],
and defines a vector φi =

[
Φ(li)′,hi′

]′1. In this paper, we use the non-
linear map whose kernel function is a Gaussian kernel. Note that an

1In this paper, vector/matrix transpose is denoted by the superscript′.
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Fig. 1. Relationship between HR image F, blurred HR image F̂, and
LR image f .

exact pre-image, which is the inverse mapping from the feature space
back to the input space, typically does not exist [5]. Therefore, the
estimated pre-image includes some errors. Since the final results es-
timated in the proposed method are the missing high-frequency com-
ponents, we do not utilize the nonlinear map for hi (i = 1, 2, · · · ,N).

From the obtained results φi (i = 1, 2, · · · ,N), the proposed
method performs their classification that minimizes the following
new criterion:

Ec =
K∑
k=1

Mk∑
j=1

||lkj − l̃kj ||2 + ||hkj − h̃kj ||2, (1)

where K is the number of the clusters. The vectors lkj and h
k
j ( j =

1, 2, · · · ,Mk) respectively represent li and hi of gi (i = 1, 2, · · · ,N)
classified into cluster k. Further, the vectors l̃kj and h̃

k
j satisfy φ̃

k
j =

[Φ(l̃kj)
′
, h̃kj ′]′, and φ̃kj is obtained below.

φ̃kj = U
kUk′
(
φkj − φ̄k

)
+ φ̄k , (2)

where φkj = [Φ(lkj)
′
,hkj

′]′, and φ̄k is the mean vector, which is calcu-
lated from φkj ( j = 1, 2, · · · ,Mk) as follows:

φ̄k =
1
MkΞ

k1k . (3)

In the above equation, Ξk =
[
φk1, φ

k
2, · · · , φkMk

]
and 1k = [1, 1, · · · , 1]′

is an Mk × 1 vector. Further,
Uk =

[
uk1, u

k
2, · · · ,ukDk

] (
Dk < Mk

)
(4)

is an eigenvector matrix of ΞkHkHkΞk′, where Hk is a centering ma-
trix defined as follows:

Hk = Ik − 1
Mk 1

k1k′, (5)

where Ik is the Mk × Mk identity matrix.
In Eq. (4), the eigenvectors ukd (d = 1, 2, · · · ,Dk) are high-

dimensional, and Eq. (2) therefore cannot be calculated directly.
Thus, we introduce the computational scheme “kernel trick” [4] into
the calculation of Eq. (2). The eigenvector matrix Uk satisfies the
following singular value decomposition:

ΞkHk � UkΛkVk′, (6)

where Λk is the eigenvalue matrix and Vk is the eigenvector matrix
of HkΞk′ΞkHk. Therefore, Uk can be obtained as follows:

Uk � ΞkHkVkΛk−1. (7)

Then, from Eqs. (3) and (7), Eq. (2) can be written as

φ̃kj � ΞkHkVkΛk−2Vk′HkΞk′
(
φkj −

1
MkΞ

k1k
)
+
1
MkΞ

k1k

= ΞkWkΞk
′
(
φkj −

1
MkΞ

k1k
)
+
1
MkΞ

k1k, (8)

where

Wk = HkVkΛk−2Vk′Hk. (9)

In this way, we can calculate Eq. (2). Next, in Eq. (1), ||lkj − l̃kj ||2
satisfies the following equation of the Gaussian kernel [4]:

Φ(lkj)
′Φ(l̃kj) = exp

⎧⎪⎪⎨⎪⎪⎩−
||lkj − l̃kj ||2
σ2l

⎫⎪⎪⎬⎪⎪⎭ . (10)

Given Ξkl = [Φ(l
k
1),Φ(l

k
2) · · · ,Φ(lkMk )] and Ξkh = [hk1,hk2, · · · ,hkMk ],

they satisfy Ξk = [Ξkl
′
,Ξkh

′]′. Thus, from Eq. (8), Φ(l̃kj) in Eq. (10) is
obtained as follows:

Φ(l̃kj) � Ξ
k
lW

kΞk
′
(
φkj −

1
MkΞ

k1k
)
+
1
MkΞ

k
l 1
k . (11)

Then, by using Eqs. (10) and (11), ||lkj−l̃kj ||2 in Eq. (1) can be obtained
as follows:

||lkj − l̃kj ||2 � −σ2l log
{
Φ(lkj)

′ΞklW
kΞk

′(
φkj −

1
MkΞ

k1k
)

+
1
MkΦ(l

k
j)
′Ξkl 1

k
}
. (12)

Furthermore, since h̃kj is calculated from Eq. (8) as

h̃kj � ΞkhW
kΞk

′
(
φkj −

1
MkΞ

k1k
)
+
1
MkΞ

k
h1
k , (13)

||hkj − h̃kj ||2 in Eq. (1) is also obtained as follows:

||hkj − h̃kj ||2 �
∣∣∣∣∣
∣∣∣∣∣hkj − ΞkhWkΞk

′
(
φkj −

1
MkΞ

k1k
)
− 1
MkΞ

k
h1
k
∣∣∣∣∣
∣∣∣∣∣
2

(14)

Then, from Eqs. (12) and (14), the criterion Ec in Eq. (1) can be
calculated.

In Eq. (2), UkUk′ is the projection matrix onto the eigenspace
spanned by their eigenvectors ukd (d = 1, 2, · · · ,Dk). Therefore,the
criterion Ec represents the sum of the approximation errors of φkj ( j =
1, 2, · · · ,Mk) in their eigenspaces. This means that the squared error
in Eq. (1) corresponds to the distance from the nonlinear eigenspace
of each cluster in the input space. Then, the new criterion Ec is
useful for classification of the local images. From the classification
results, we can estimate the nonlinear eigenspaces of the HR image
by calculating the eigenvector matrices Uk (k = 1, 2, · · · ,K).
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3. KERNEL PCA-BASED HR IMAGE ESTIMATION

In this section, we show a new estimation method of the HR image
by utilizing the nonlinear eigenspaces calculated in the previous sec-
tion. Given two local images G and Ĝ (w × h pixels) respectively
clipped from the same position of the HR image and the blurred HR
image shown in Fig. 1, they satisfy the following equation:

φ̂ =

[
I 0
0 0

]
φ

= Σφ, (15)

where the vector φ (= [Φ(l)′, h′]′) and φ̂ (= [Φ(l)′, 0′]′) are respec-
tively calculated fromG and Ĝ by the same way as φi (i = 1, 2, · · · ,N)
in the previous section. In Eq. (15), since the matrix Σ is not reg-
ular, we cannot directly calculate its inverse matrix to estimate the
missing high-frequency components h and obtain the original HR
image. Thus, the proposed method projects φ and φ̂ onto the non-
linear eigenspace of cluster k, and newly defines the matrix, which
corresponds to Σ, in the nonlinear eigenspace. Then, if the defined
matrix becomes regular, its inverse matrix can be calculated. There-
fore, since the missing high-frequency components are also calcu-
lated approximately, the accurate reconstruction of the HR image
can be expected. We show the specific algorithm of the proposed
method in the rest of this section.

The vectors φ and φ̂ can be projected onto the Dk-dimensional
nonlinear eigenspace of cluster k by using the nonlinear eigenvector
matrix Uk as follows:

p = Uk′
(
φ − φ̄k

)
, (16)

p̂ = Uk′
(
φ̂ − φ̄k

)
. (17)

Further, φ is approximately calculated as follows:

φ � Ukp + φ̄k. (18)

Next, by substituting Eqs. (15) and (18) into Eq. (17), the following
equation is obtained:

p̂ � Uk′Σ
(
Ukp + φ̄k

)
− Uk′φ̄k . (19)

Thus,

Uk′ΣUkp � p̂ − Uk′Σφ̄k + Uk′φ̄k. (20)

In the above equation, if the matrix Uk′ΣUk is regular, its inverse
matrix

(
Uk′ΣUk

)−1
can be calculated, and the following equation is

obtained.

p �
(
Uk′ΣUk

)−1
p̂ +
(
Uk′ΣUk

)−1
Uk′
(
φ̄k − Σφ̄k

)
. (21)

Finally, by substituting Eqs. (16) and (17) into the above equation,
the following equation can be obtained:

Uk′
(
φ − φ̄k

)
�
(
Uk′ΣUk

)−1
Uk′
(
φ̂ − Σφ̄k

)
. (22)

Then, we can calculate an approximation result φk
(
=
[
φkl
′,hk′
]′)
of

φ from cluster k’s eigenspace as follows:

φk � Uk
(
Uk ′ΣUk

)−1
Uk′
(
φ̂ − Σφ̄k

)
+ φ̄k . (23)

Further, by utilizing Eq. (7), we can obtain the following equation:

φk � ΞkTkΞk′
(
φ̂ − Σφ̄k

)
+ φ̄k , (24)

where Tk is calculated as follows:

Tk = HkVk(Vk′HkΞk′ΣΞkHkVk)−1Vk′Hk . (25)

Note that the estimation result, which we have to estimate, is the
vector h of the unknown high-frequency components. Since Eq. (24)
is rewritten as[

φkl
hk
]
�
[
Ξkl
Ξkh

]
TkΞk′

(
φ̂ − Σφ̄k

)
+

[
φ̄kl
h̄k
]
, (26)

where φ̄k =
[
φ̄kl
′, h̄k′
]′
. Thus, from Eqs. (3) and (26), the vector

hk, which is the estimation result of h by cluster k, is calculated as
follows:

hk � ΞkhT
kΞk

′
(
φ̂ − 1

MkΞ
k
l 1
k
)
+
1
MkΞ

k
h1
k . (27)

Then, utilizing the nonlinear eigenspace of cluster k, the proposed
method can estimate the missing high-frequency components.

In the least-squares sense, the nonlinear eigenspace of cluster k
correctly approximates φkj ( j = 1, 2, · · · ,Mk) belonging to the same
cluster k. Therefore, if we can classify φ of the target local image
G, the proposed method accurately reconstructs the missing high-
frequency components h by using the nonlinear eigenspace of the
cluster including φ. Unfortunately, since the vector, which can be
utilized for the classification, is only φ̂, φ cannot be classified by the
algorithm shown in the previous section. Thus, in order to achieve
the classification of φ, the proposed method utilizes the following
novel criterion as a substitute for Eq. (1).

Ẽk = ||l − lk||2. (28)

In the above equation, ||l − lk ||2 is satisfied as follows:

Φ(l)′φkl = exp
{
− ||l − l

k ||2
σ2l

}
, (29)

and φkl is calculated from Eqs. (3) and (26) below.

φkl � Ξ
k
l T
kΞk

′
(
φ̂ − 1

Mk ΣΞ
k1k
)
+
1
Mk Ξ

k
l 1
k . (30)

Then, from Eqs. (29) and (30), the criterion Ẽk in Eq. (28) can be
rewritten as follows:

Ẽk � −σ2l log
{
Φ(l)′Ξkl T

kΞk
′(
φ̂ − Σφ̄k

)
+
1
MkΦ(l)

′Ξkl 1
k
}
. (31)

This criterion Ẽk is the squared error calculated between the low-
frequency components lk reconstructed with the high-frequency com-
ponents hk by cluster k’s nonlinear eigenspace and the known origi-
nal low-frequency components l. Therefore, Ẽk is suitable for eval-
uating the cluster k and applicable for the classification of the tar-
get local image. Then, the selection of the optimal cluster for the
target local image whose high-frequency components are unknown
becomes possible. Furthermore, the proposed method regards the
result φk minimizing Ẽk as the output φ∗

(
= [φ∗l

′,h∗′]′
)
. Then, l + h∗

is the estimated vector whose elements are the raster scanned inten-
sities of the target local image in the HR image.

As described above, we can reconstruct the target local image
of the HR image. The proposed method clips local images (w × h
pixels) at the same interval in a raster scanning order from the blurred
HR image. Further, each local image is reconstructed by the above
schemes. Note that each pixel has multiple estimation results if the
clipping interval is smaller than the size of the local images. In this
case, the proposed method regards the result minimizing Eq. (31) as
the final result. Then, we can realize the resolution enhancement of
the target LR image.
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(a) (b)

(c) (d)

Fig. 2. (a) Original Lena image, (b) Estimated HR image by the
proposed method (31.53 dB), (c) Estimated HR image by the nearest
neighbor interpolation method (26.23 dB), (d) Estimated HR image
by the sinc interpolation method (31.43 dB).

4. EXPERIMENTAL RESULTS

The performance of the proposed method is verified in this section.
We use test images “Lena” and “Baboon” of size 256× 256 pix-
els and 8bits/pixel as HR images. In order to obtain LR images, we
subsample the test images to the size of 128 × 128 pixels by using
the sinc filter with the hamming window. Next, we apply the pro-
posed method2 to the target images of size 128 × 128 pixels and
obtain the enlarged results of size 256 × 256 pixels. We show the
estimated HR image of “Lena” in Fig. 2(b). Note that the enlarged
portions around the hat of “Lena” are shown in Fig. 2 for better
subjective evaluation. For comparison, we show Figs. 2(c) and (d),
which are respectively obtained by the traditional nearest neighbor
and sinc interpolation [2] methods. Further, another experimental re-
sult performed for “Baboon” is shown in Fig. 3. From these figures,
we can see that the proposed method preserves the sharpness more
successfully than the traditional methods.

Since the traditional methods cannot estimate the missing high-
frequency components of the original HR images from the LR im-
ages, their reconstructed HR images suffer from some blurring. On
the other hand, the proposed method estimates the missing high-
frequency components by utilizing the correlation between two dif-
ferent resolution levels of a pyramid structure, effectively.

Finally, as shown in the captions of Figs. 2 and 3, the proposed
method achieves 0.08 and 1.57 dB improvement over the best pub-
lished method, respectively. Therefore, our method realizes the ac-
curate resolution enhancement subjectively and objectively.

2We set the parameters of the proposed method as follows: σ2l is set to
the variance ||li − l j ||2 (i, j = 1, 2, · · · , N), and K = 6.

(a) (b)

(c) (d)

Fig. 3. (a) Original Baboon image, (b) Estimated HR image by the
proposed method (25.78 dB), (c) Estimated HR image by the nearest
neighbor interpolation method (24.21 dB), (d) Estimated HR image
by the sinc interpolation method (23.42 dB).

5. CONCLUSIONS

In this paper, we have proposed a new kernel PCA-based framework
for image resolution enhancement in still images. We note the corre-
lation between two different resolution levels of a pyramid structure,
and realize the estimation of nonlinear eigenspaces of the HR image
from only the observed target LR image. Further, using the opti-
mal nonlinear eigenspace adaptively selected by the novel criterion,
the proposed method can accurately calculate the inverse mapping,
which reconstructs the missing high-frequency components from the
known low-frequency components. Therefore, the accurate HR im-
age can be obtained. Consequently, we can confirm the improvement
of the proposed technique over previously reported technique. In fu-
ture work, reduction of computational cost is needed for practical
use of the proposed method.
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