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ABSTRACT

In this paper we develop a confidence measure that can de-

termine if a given set of samples is suitable for inclusion in

the reconstruction of a higher resolution dataset. The confi-

dence measure is formulated as a weighted combination of

two well defined objective functions. We discuss the scope

of the confidence measure and the two key factors that affect

it: (i) non-uniformity of the samples and (ii) error in tempo-

ral registration. We also present a greedy iterative rank-based

method that uses the confidence measure for reconstruction

from multiple sample sets. The proposed method is evaluated

with real video, audio and MRI data.

Index Terms— Temporal registration, Confidence mea-

sure, Video synchronization.

1. INTRODUCTION

In many applications, such as 3D rendering, super-resolution

video, human activity recognition and video retrieval, acquir-

ing multiple video streams can be beneficial. Unless these

video streams are acquired via a hardware controlled timing

mechanism, they are prone to temporal offsets caused by dif-

ferent acquisition start times or different frame rates of the

cameras. Before fusing these video streams, the temporal

offset between them needs to be computed. Various meth-

ods for computing temporal offsets have been proposed in the

past and are referred to as temporal registration or video syn-

chronization algorithms [1]-[5]. Some algorithms compute

registration to sub-frame accuracy [4] while others perform

a one-to-one frame correspondence [1]. However, most of

these algorithms assume that the dynamics of the scene have

been acquired at sampling rates higher than the Nyquist rate.

This assumption is not true for applications in medical imag-

ing (MRI) or videos of fast moving objects. When video ac-

quisition is at low rates and less than the optimal number of

samples are available, temporal registration algorithms report

erroneous offsets. Also, the presence of noise in the videos

results in error in feature computation which translates into

error in the temporal registration. Since the original high-

resolution event is unavailable for comparison, the degree of

inaccuracy in the computed offset cannot be determined. In

such conditions it would be useful to be able to compute (i)

an estimate of how much confidence we have in the temporal

registration and also (ii) an estimate of how much new infor-

mation is added to the reconstruction process by the inclusion

of a particular sample set.

Combining multiple video streams to generate a higher

resolution video can also be formulated as a 2D case of recur-

rent non-uniform sample (RNUS) reconstruction, and there-

fore governed by the theorems associated with non-uniform

sampling. RNUS reconstruction [7] refers to reconstruction of

a signal from multiple sample sets which are offset from each

other by an arbitrary time interval. Irrespective of whether we

approach the fusion of video streams as a temporal registra-

tion problem or a RNUS problem, it is imperative to identify

and discard video streams that will result in poor reconstruc-

tion. In this paper we present a measure to determine if a

given set of samples is suitable for inclusion in the reconstruc-

tion of a higher resolution dataset. In [6], we presented a basic

formulation of the confidence measure with preliminary ex-

perimental results. In this paper we extend our previous work

to develop a generalized framework for computing the confi-

dence measure based on two objective functions. We discuss

the various factors influencing the confidence measure, from a

temporal registration as well as RNUS point of view. We also

develop a greedy rank-based method that relies on the pro-

posed confidence measure to iteratively fuse multiple sample

sets, while minimizing the reconstruction error. Experimental

results with real and synthetic data are also presented.

2. PRELIMINARY DEFINITIONS

In this section we present some preliminary definitions that

are required to formulate the confidence measure. Let Si,

where i = 1..N , denote N video sequences that are acquired

(w.l.o.g.) at a constant frame rate and are offset from each

other by a random time interval tn such that the video se-

quences correspond to the 2D RNUS case discussed above.

Each sequence Si has M frames (I) such that Ii,k denotes the

kth frame of the ith video sequence (henceforth referred to as
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sample set). Features (Ω) are extracted and tracked through

all sequences to generate feature trajectories Ωi,k (in the spirit

of the discussion in [4]). In our past work [5], we built a

continuous time event model from Ω, based on weighted lin-

ear least squares such that a continuous model of the feature

space (Ωi,t) is estimated as follows:

Ωi,t = Ωi,kβi + εi, (1)

where βi is the regression parameter and εi is the model error

term. We derive an estimate Ω̂i,t = Ωi,kβ̂i by iteratively com-

puting β̂i such that a weighted residual error is minimized as

follows:

minimize(
M∑

k=1

wk‖Ωi,k − Ω̂i,t‖2 : t = k) w.r.t. β̂i. (2)

Using event models results in a more accurate estimate of

the subframe temporal offset compared to the commonly used

linear interpolation approach [4]. Once the event models Ω̂i,t

are available, the temporal offset (tn) is computed using the

following objective function:

tn = [arg min
tn

∑

i,j∈(1..N)

(‖Ω̂i,t − Ω̂j,t+tn‖2)]. (3)

3. PROPOSED METHOD

While (3) is formulated as an objective function to compute

the temporal offset between two sample sets, it can also pro-

vide information pertaining to how uniformly the samples are

distributed and the minimum registration error achieved. We

exploit this information to develop a generalized framework

for computing the confidence measure. Generalizing the def-

inition of local and global registration error from [6] we now

define two objective functions Φg and Φl as follows (tn is

computed via (3)):

Φg =
∑

i,j,∈(1..N)

(‖Ωi,kT − Ωj,kT+tn
‖2), (4)

Φl =
∑

i,j,∈(1..N)

(‖Ω̂i,t − Ω̂j,t+tn
‖2). (5)

i.e., Φg is the minimum temporal registration error over

the discrete samples acquired, while Φl is the minumum tem-

poral registration error over the continuous event models of

the samples. Note that in the case of video sequences, the

sampling period T represents the inverse of the fixed frame

rate of the cameras. In [6] we hypothesized that a large global

registration error indicates a more uniform distribution of sam-

ples and a small local regsitration error represents a better

temporal registration. Consequently, the following confidence

measure is proposed:

χ = wgΦg + wlΦ−1
l , (6)

where wg and wl are weights assigned to each of the objective

functions. With no prior information on the sample sets, these

weights can be set to 0.5. The proposed confidence measure

(6) takes into account two factors that affect the reconstruc-

tion process: (i) the uniformity (or lack thereof) of sample

data and (ii) the accuracy with which the datasets have been

registered. In the following sections we justify why the above

two factors play a pivotal role in defining the confidence mea-

sure and why Φg and Φl are suitable indicators of these two

factors. We also present an iterative approach that uses χ in

Eq. (6) to fuse multiple sample sets, providing a much better

reconstruction performance, than an arbitrary fusion of sam-

ple sets.

3.1. Non-uniformity of Sample Sets

The central idea behind the non-uniform sampling theorem is

that the non-uniform impulses of the sampling filter can be

represented as a linear system of equations in terms of uni-

form sampling filter impulses. For example, suppose a sig-

nal f(t) is sampled uniformly at t0, t1, t2 and non-uniformly

at t′0, t
′
1, t

′
2, then using the Whittaker-Shannon Kotel’nikov

(WSK) sampling theorem, the non-uniform samples can be

represented in terms of the uniform samples as follows:

f(t′i) = f(t0)sinc(t′i − t0) + f(t1)sinc(t′i − t1)
+ f(t2)sinc(t′i − t2) : i = (0, 1, 2). (7)

The above set of linear equations can be solved for sample

values at the uniform sampling instances using methods such

as LU decomposition, SVD and conjugate gradients. As long

as the system of linear equations is not singular an interpo-

lation formula for reconstruction from non-uniform samples

can be formulated in the same manner as the WSK interpola-

tion formula. The system of linear equations (7) can be solved

if the equations are linearly independent, i.e.,

maximize[(t′i − t0) − (t′j − t0)] : i �= j. (8)

An interpretation of (8) is that for optimal interpolation

or reconstruction, the recurrent sample sets should be as far

away from each other as possible. If sample sets are maxi-

mally separated in time, then Φg (4) will be high. Thus, in-

formation about the non-uniformity of the sample sets can be

derived from the objective function Φg .

3.2. Error in Temporal Registration

Computing temporal registration between sample sets is a non-

trivial task. Since registration is computed as an optimization

there is a possibility of error in the computation. Most al-

gorithms in digital communications approach a similar prob-

lem of estimating sampling jitter by modeling the jitter as a

Gaussian distribution. However, in our case we model the

error in temporal registration δ(t) as a uniform distribution.
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Fig. 1. Flowchart of iterative ranking method based on the proposed confidence measure. FR* indicates a RNUS fuse and

reconstruction algorithm from [8].

This allows a more generic representation of the error and

assumes no prior knowledge about the expected error other

than a possible range. The computed temporal offset is there-

fore tn + δ(t). Objective function Φl in Eq.(5) which sums

the squared difference in the event models over the computed

offset thus depends on δ(t). In other words, as the temporal

registration estimate becomes more inaccurate, Φl increases.

Experimentally we found the increase in Φl to be linearly re-

lated to the error in temporal registration. Φl also indicates

that for a given distribution of error, there exists a thresh-

old number of sample sets beyond which adding more sample

sets is redundant and does not reduce reconstruction error. A

mathematical formulation of such a threshold is beyond the

scope of this paper, and will be dealt with in future work.

3.3. Iterative Rank-based Method

In reconstructing from multiple sample sets we need to order

the sample sets such that the information added for recon-

struction is maximized and the error in the reconstruction is

minimized. This can be accomplished by ranking the multiple

sample sets based on the computed confidence measures, as

shown in Fig.1. We use ranking instead of directly using the

numerical confidence measure scores as the scales of the con-

fidence may change over each iteration, while ranking would

be a more consistent relative measure of the confidence. Other

implementations such as normalizing the confidence measure

can also be used. We also assume that in each iteration the

number of distinct ranks decreases by 1. In practice, how-

ever, confidence measure scores may result in ties. In such

cases a weighted measure of the previous rank score can be

added to the current rank to break the tie. The iterations are

stopped when the difference between current reconstructed

signal Rs(i) and the signal from previous iteration Rs(i − 1)
becomes small or when all the sample sets have been fused.

4. EVALUATION OF PROPOSED METHOD

We tested the rank-based reconstruction method on both syn-

thetic as well as real data. Synthetic data was generated as

Table 1. Results with real video sequences.

Scene Sequence χ SSE

Scene 1
seq1-seq2 0 1700

seq1-seq2 1 4.2

Scene 2
seq2-seq1 0 81200

seq2-seq3 1 42000

Scene 3
seq3-seq1 0 20

seq3-seq2 1 4

Scene 4 MRI

vid1-vid2 27.64 NA

vid2-vid3 38.70 NA

vid1-vid3 28.15 NA

a 1D high resolution random signal bandlimited to a user-

controlled frequency. This high resolution data was then sub-

sampled at random offsets to generate the multiple sample

sets. Real data was collected via three sources: MRI videos

of swallowing, real videos of a person swinging a ball and

audio data from MATLAB demos.

For the experimental sample sets, we compute the pro-

posed confidence measure and the rank the sample sets as

per the algorithm in Section 3.3. The results of this approach

with real video data, synthetic data and audio data are shown

in Table 1 and Fig.2(a)-(b)respectively. Table 1(Scene 1-3)

lists an absolute value of 1 or 0 for the confidence measure

χ and also the corresponding sum of squared error (SSE). It

can be seen that χ = 0 (low confidence) indeed corresponds

to a high SSE. Results corresponding to Scene-4 MRI are dis-

cussed later in this section. Figure 2(a) plots the normalized

reconstruction error versus the number of sample sets added

during reconstruction, for synthetic test data. It can be seen

that if the sample sets are arbitrarily chosen and fused, the re-

construction error is much higher than if the sample sets are

ranked and chosen based on the proposed confidence mea-

sure. In some cases, the proposed method resulted in lower

reconstruction error with a few ranked sample sets than even

all sample sets combined, as illustrated by point-1 and point-2

in Fig.2(a). For audio data, we use a section of an audio sig-

nal available in the MATLAB demo data as ‘toilet.wav.’ We

assume that low resolution audio data is available and multi-
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(a)

(b)

Fig. 2. Results of the iterative ranking method for (a) syn-

thetic and (b) audio data.

ple such low resolution files are generated by subsampling the

original wavefile. The sampling rate is below the Nyquist rate.

Sample sets are temporally aligned and reconstructed based

on the proposed confidence measure and ranking system. Re-

sults are shown in Fig.2(b). It can be seen that the proposed

confidence measure and the ranking system successfully or-

der the audio sample sets such that lesser number of sample

sets are needed to reconstruct the same signal, compared to

an arbitrary ranking of the audio sample sets.

We also acquired three MRI videos of a person swallow-

ing a fixed amount of water. With MRI data, ground truth reg-

istration information is not available (SSE w.r.t. to the ground

truth cannot be computed), hence we visually determine the

registration. The original as well as temporally registered

and reconstructed MRI videos can be viewed at: www.ece.
ualberta.ca/ ˜ meghna/ICASSP08.html. Visually it is seen

that fusing vid2-vid3 results in the best registration and re-

construction, see Fig.3. Confidence measures computed be-

tween vid1-vid2, vid2-vid3 and vid1-vid3 are listed in Table

1 Scene-4. It can be seen from the results that the confi-

dence measure for vid2-vid3 combination is indeed the high-

est. Thus, our iterative ranking system, which uses the gen-

eralized confidence measure, performs much better than an

arbitrary ordering of the sample sets during reconstruction, in

both synthetic and real test cases.

5. CONCLUSION AND FUTURE WORK

In this paper, we developed a confidence measure that allows

us to choose between recurrent non-uniform samples such

that the overall signal reconstruction error is minimized. The

confidence measure is based on two objective functions - (i)

Φg which indicates the non-uniformity in sampling, and, (ii)

(a) (b)

Fig. 3. Results of registered and fused MRI. (a) vid1-vid2,

χ = 27.64, zoomed position of the tongue shows incorrect

registration, (b) vid2-vid3, χ = 38.7, zoomed position of

tongue shows correct registration.

Φl which indicates the reliability of the temporal registration.

We also develop a ranking system that iteratively updates the

rank assigned to sample sets and fuses them to optimize re-

construction. Such a ranking system based on the confidence

measure is shown to outperform an arbitrary ordering of the

sample sets, which would otherwise be used when no prior

information about the sample set order is known. In the fu-

ture, we would like to evaluate the assignment of the weights

to the objective functions and develop a strategy to tune these

weights for event specific sample sets.
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