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ABSTRACT 
 
In this paper, we propose an effective scheme to enhance the 
visual details at the minimal cost of user adjustments. The 
uprising importance of automatic tone reproduction comes 
from the increasing population of digital archive programs, 
which contains a large number of images/videos either old,  
irreproducible, or poorly captured. We attempt to solve 
above issues by a new local normalization step and an 
adaptive contrast assessment process. With those two 
processes, our method can effectively enhance poor quality 
regions and simultaneously preserving good quality ones 
with default parameter settings. The experimental results 
demonstrate that our method is superior to many existing 
algorithms when applied to aid digital archiving issues. 
 

Index Terms—Image enhancement 
 

1. INTRODUCTION 
 
The lack of sufficient dynamic range and proper shading 
condition are still challenging issues of modern sensor 
technology and photography. As a result, important details 
in a captured image/video can be suppressed and become 
imperceptible. To recover such details while simultaneously 
retaining well-defined parts, a number of tone reproduction 
algorithms have been developed in recent years [1-4]. Based 
on the strategies employed in the literature, we can classify 
the existing techniques into two categories: global tone 
reproduction algorithms and regional tone reproduction 
algorithms. There are many existing global tone 
reproduction approaches. Fattal et al. [2] proposed a method 
to suppress the magnitude of large luminance gradients and 
then preserve fine details by identifying changes in 
intensity. In [1], Durand et al. proposed a bilateral filter to 
decompose an image into two layers: a large-scale variation 
base layer and a visibility preserving detail layer. The two 
layers are produced by performing bilateral filtering, and the 
relative contrast is subsequently reduced in the large-scale 
variation layer. However, in the existing global approaches, 
high contrast regions are inevitably suppressed.  

As to regional tone reproduction algorithms, Krawczyk 
et al. [3] proposed decomposing an image into areas of 
consistent luminance and calculating local lightness values. 

Since region contrast reproduction schemes process each 
image region differently, the main drawback of such 
approaches is that they will indispensably produce unnatural 
boundaries. No matter global or regional tone reproduction 
approaches, a common drawback is that the quality of their 
results heavily depends on how parameters are set. 
Different from above approaches, we attempt to use two 
primary components in our proposed algorithm—local 
normalization and adaptive contrast assessment—to avoid 
previously mentioned drawbacks. In order to perform local 
normalization, our approach starts from acquiring the target 
image’s local maximum and minimum surfaces. By thinking 
an image as a 3D surface, the surface patches that include 
the local maxima and the local minima can enclose the 
entire 3D surface from top and bottom. By normalizing the 
image toward the local maxima and minima, we can expand 
an image signal to utilize most part of its dynamic range. 
Then, we design an adaptive contrast assessment process in 
our tone reproduction scheme. With local normalization and 
adaptive contrast assessment working together, our method 
can directly enhance poor quality regions and at the same 
time preserving good quality ones like what photographers 
do in manual image enhancement and requires intrinsically 
no user parameter adjustments. This merit is important when 
applying our algorithm to aid digital archiving issues. 
 

2. OUR METHOD 
 
2.1. The Concepts 
At present, an image model ),( yxI is commonly regarded as 
a product of reflectance ),( yxR and luminance ),( yxL at 
each point of coordinates ),( yx , i.e.,                                           

),(),(),( yxLyxRyxI ×= . (1) 

Thus, we assume the enhanced image ),(' yxI becomes: 
),('),('),(' yxLyxRyxI ×= . (2) 

For homomorphic filtering on an image, the filter 
suppresses the luminance part of an image. This filtering 
makes the overall contrast reduced and the corresponding 
histogram converges toward the center of a dynamic range. 
On the other hand, we performed manual image 
enhancement over more than 150 different poorly captured 
images. Through the set of experiments, we found that the 
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average distributions of histograms of those manually 
enhanced images were with low values at both ends of a 
histogram. The above two observations concur with each 
other. Under these circumstances, we have to avoid the 
image luminance being extreme. We express this 
characteristic as follows:  

φδ −<<+ maxmin ),(' GyxLG , (3) 

where minG and maxG are the minimum and maximum value 
of a dynamic range. δ and φ are two constants to prevent 
extreme luminance values. On the other hand, homomorphic 
filtering enhances image details by increasing the ratio of 
reflectance ),( yxR to luminance ),( yxL . Accordingly, 
through the experiments we conducted, we also found the 
resultant contrasts became larger in the enhanced images 
than in the originals. Furthermore, Weber’s Law also points 
out a similar concept: a contrast is perceivable only when it 
is greater than a predetermined threshold. Therefore, we can 
conclude that the details of an image are visible only when 
its local contrast is large enough. Having the above 
mentioned characteristics, we can derive: 

),(/),(),('/),(' yxLyxRyxLyxR > , (4) 

thresholdyxRegionContrast k >)),(( ,  (5) 

where (.)kRegion is the kth region of image I that exhibits 
meaningful details to human beings. Equations (3), (4), and 
(5) together can work as guidelines for designing image 
enhancement algorithms. To follow these guidelines in 
designing our algorithm, we first start from Equations (4) 
and (5). In order to extend reflectance ),( yxR , we want our 
algorithm to make an image signal utilize its available 
dynamic range as much as possible to ensure Equations (4) 
and (5) are satisfied. Hence, we include a normalization 
stage in our design. This normalization process can 
guarantee the increase of dynamic range usage. Furthermore, 
the characteristic of Equation (3) can be satisfied by 
modifying the normalization stage into a local normalization 
one. For example, a signal can be considered as S piecewise 
connected dense line segments, which can be s as follows: 

)(),(
     }, ..., ,2 ,1  ),,({),(

min, kkkk

k

RandIyxI
SkyxIyxI

φ+=
==

. (6) 

For each line segment kI , kImin, is the local minimum of kI , 
)( kkRand φ is a random variable that varies from 0 to kφ . 

Hence after applying local normalization (.)LN , kImin,  will 
be removed and the normalized signal is shown as follows: 

}) ..., ,2 ,1  ),(({
}) ..., ,2 ,1  ),,(({)),((

SkRandLN
SkyxILNyxILN

kk

k

==
==

φ
. (7) 

Therefore, the mean of )),(( yxILN is shown as follows: 
( ) )8(,/})) ..., ,2 ,1  ),(({()),(( SSkRandLNSumyxILNMean kk == φ  

where (.)Sum represents the summation process. For S is 
large, based on the central limit theorem, 

})) ..., ,2 ,1  ),(({( SkRandLNSum kk =φ will become 

normally distributed. Therefore, the mean of the normalized 
signal )),(( yxILN will be close to the center of dynamic 
range. On the other hand, ),(' yxL can be considered as a 
low-pass filtered version of the normalized signal 

)),(( yxILN . Hence, it is certain that ),(' yxL will satisfy the 
characteristic of Equation (3). Note that although 

)),(( yxILN can satisfy the constraints set in Equations (3), 
(4), and (5), the original ),( yxL is seriously removed. In 
addition, eliminating the entire ),( yxL will completely 
remove the tone of the original. This outcome is definitely 
not what we want in our results. Therefore, we added an 
addition attenuation ratio T to multiply the lower bound 
intensity kImin,  in the local normalization process. This is to 
ensure that ),( yxL can be preserved, but it will be 
suppressed to T−1 . The effect of adding this addition 
attenuation ratio T is that the value of 

))),((( yxILNMean will be somewhat shifted away from the 
center of the dynamic range. However, such shift will not 
move ))),((( yxILNMean to either of the two extreme values 
of the dynamic range. Consequently, the characteristic of 
Equation (3) still holds. 

Other than checking Equations (3), (4), and (5) to see 
whether an image is well reproduced, we have to consider 
other possible side effects. One notable side effect often 
discussed in tone reproduction techniques is halo effect. 
Halo effect usually occurs when low-pass filtering is 
introduced in the enhancement process. However, halo 
effect is not exhibited among our results because our local 
normalization scheme does not use low-pass filtering to 
enhance an image. 

Furthermore, in order to ensure the improvement of 
image quality, it is necessary to include an assessment 
mechanism in the design. With this mechanism, we can 
retain the regions of the original that are better than those of 
the locally normalized one. To achieve this, we add an 
adaptive contrast assessment portion in our tone 
reproduction algorithm. The adaptive contrast assessment 
part will compute an exponent factor that biases between the 
original image and the locally normalized one. 
 
2.2. The Proposed Tone Reproduction Scheme 
Following the concepts in the previous section, we propose 
a tone reproduction scheme as follows: 

),(),(),(),(' yxCyxEyxIyxI ×= , (9) 

where ),(' yxI is an enhanced image signal. 
),(),( yxEyxI × is the locally normalized version of ),( yxI , 

hence ),( yxE is the local normalization ratio kernel. In our 
design, for image ),( yxI , ),( yxE is designed as follows: 

),(
),(

),(
minmax

min
yxI

G
TII

TIyxI
yxE ×

+×−
×−

=
ε

. (10) 
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As described before, the normalization equation is not an 
ordinary one because we added an attenuation ratio 
T (ranging from of 0 to 1) in our tone reproduction scheme. 

maxI and minI are the local maxima and minima of an image 
signal respectively. G is the full size of the dynamic range, 
andε is an offset to avoid the divide-by-zero situation. As 
to ),( yxC , it’s the adaptive contrast assessment factor: 

)})'(),((arg{),( ILapILapGaussianyxC = , (11) 
where babababa ≤=>=  when 1},arg{ , when 0},arg{ ; 

(.)Lap is the Laplacian operator. With ),( yxC , our proposed 
mechanism can enhance the low contrast regions of an 
image, while preserving the details of high contrast regions. 
For local normalization, we partition an image into 
piecewise connected segments such as in Equation (6) to 
evaluate the effectiveness of our algorithm. Thus, 

} ..., ,2 ,1  ),,({),( SkyxEyxE k == . From Equations (1) and 
(10): 
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where TIIG kkkL ×−= min,max,, .Let ),( yxkη be the intensity 

difference between ),( yxIk and kImin, , then we have 
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Now considering the following three ordinary target 
region cases for enhancing: 1) Region with low local 
contrast and high local luminance. 2) Region with low local 
contrast and medium local luminance. 3) Region with low 
local contrast and low local luminance. Because all three 
cases are in the condition of low local contrast, kLG , will be 
smaller in comparison with G . According to the statistics of 
Weber’s Law [8], kLG , that falls below about 13/G will be 
hard to be perceptible. Now considering the first case, the 
local luminance is high so that kImin, can be larger in 
comparison with ),( yxkη . Therefore, 
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For the second case, kImin, is comparable with ),( yxkη ,  
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For the third case, ),( yxkη is more dominant than kImin, , 
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By careful selection of T andε , our proposed algorithm can 
guarantee to have V greater than 1 in all cases. In the 
scheme, ε is a constant offset we define which is no more 
than G/35. For example, if we set T = 0.8 andε =7. When V 
> 1, one can interpret the above three cases as follows: for 
the first case, since the local luminance is high, L1(x,y) tends 
to decrease. However, in order to follow V’case1 > 1, R1(x,y) 
would tend to be greater than 1. As to the second case, the 
resulting V’case2 will be quite large with our settings. Even 
with a medium local luminance, V’case2/L2(x,y)= R2(x,y) is 
still greatly larger than 1. The third case is similar. With a 
dominating ),( yxkη would make V’case3 a large value 
comparing to 1, it is reasonable to have L3(x,y)>1 and 
R3(x,y)>1 to ensure a large V’case3. To sum up, it is obvious 
that the proposed image enhancing process would follow the 
characteristics of Equations (3), (4), and (5). That is, the 
details and visibility of a processed image are both restored. 
 

3. EXPERIMENT RESULTS 
 
To test the effectiveness of our method, we conducted 
experiments on a set of images acquired under various 
shading/lighting conditions. Figures 1 (a), (b), (c), and (d) 
show four test images in which the complexity ranges from 
simple to complex. Figures 1 (e), (f), (g), and (h) show the 
tone reproduced results. It is apparent that the details and 
chromatic information of the tone reproduced images shown 
in Figures 1 (f) and (g) were both greatly enhanced. As to 
the tone reproduced images shown in Figures 1 (e) and (h), 
the visual details of their heavily shaded areas were 
recovered. One thing to be noted is that the halo effect was 
greatly reduced due to the avoidance of using low-pass filter 
in the local normalization process. Low-pass filtering is a 
major cause of the halo effect in most image enhancement 
algorithms. 

To explain the effectiveness of our method, we introduce 
the concept of Weber’s Law. An approximation of the 
gamma corrected Weber’s Law function is addressed in [4]. 
With this curve, we can estimate the percentage of a photo 
where image details are visible to a human observer and 
accordingly obtain the contrast distribution of an image. 
Higher perceptible percentage corresponds to more image-
detail-perceivable regions of an image. For example, in this 
set of experiments, our method restored the highest amount 
of image detail regions thus received the highest percentage 
(90.58%). Under above evaluation metric, Fattal et al.’s 
method generally yielded the second best results among all 
our test sequences, which contained more than 150 images. 
Hence in Figure 2, we show a more detailed comparison 
between Fattal et al.’s results and ours. Since their tone 
reproduction algorithms require a good parameter to obtain 
visually pleasing results, we fine tuned their parameters to 
obtain a near optimal set of results in this comparison. 
However, our method does not need to do manual parameter 
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selection.  
 

4. CONCLUSION 
 
We have proposed an automatic tone reproduction scheme 
based on the image model. With careful design, our 
algorithm is proved to produce results that fit the goals of 
tone reproduction. From our test data, which includes a 
range of lighting conditions and shading effects, our tone 
reproduction algorithm can achieve excellent detail 
reproduction without any user parameter adjustments.  
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(a) (b) (c) (d) 

   
(e) (f) (g) (h) 

Figure 1. Test images and results with lighting/shading conditions: (a)-(d), original images; (e)-(h), enhanced images. 
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Figure 2. Perceptible percentage comparison over two tone reproduction algorithms. Noted the contrast distribution of 
our method spreads significantly wider. 
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